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e One says that a random variable X is a Gaussian of mean p and variance v > 0, to be denoted
x4 N (u,v), if it has the density fx(z) = efi(xf“)i/%. Then

EX]=p, E[X-p?)=v.

e One says that a vector of random variables X = (X1,...,X,) is a Gaussian of mean [ and

covariance matrix C' (a real symmetric positive definite n X n matrix), to be denoted X 4
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N (ji, C), if it has the density f¢(Z) =e 2@ “)W. Then

EXil =pi,  E[(Xi—m)(Xj —py)l =Cij

e A random variable X is said to be centered if it has zero mean, E[X] = 0.
e If X is a centered Gaussian random variable and b € C,
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e If X is a centered Gaussian random vector and b € cn,
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e If X is a centered Gaussian random variable and F' an arbitrary function (regular enough) from
R to R,
E[XF(X)] = E[X’|E[F'(X)] .

e If X is a centered Gaussian random variable and F an arbitrary function (regular enough) from
R™ to R,

E[X,F(X1,...,X,)] = ZH:E[Xin]E[(ajF)(Xl, LX)
j=1



