ICFP M2 - Statistical physics 2
 A reminder on some Gaussian identities

Grégory Schehr, Guilhem Semerjian

January 2020

- If $a>0$ and $b \in \mathbb{C}$,

$$
\int_{\mathbb{R}} \mathrm{d} x e^{-\frac{1}{2} a x^{2}}=\sqrt{\frac{2 \pi}{a}}, \quad \int_{\mathbb{R}} \mathrm{d} x e^{-\frac{1}{2} a x^{2}+b x}=\sqrt{\frac{2 \pi}{a}} e^{\frac{1}{2} \frac{b^{2}}{a}} .
$$

- If A is an $n \times n$ real symmetric positive definite matrix and $\vec{b} \in \mathbb{C}^{n}$,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \mathrm{~d} \vec{x} e^{-\frac{1}{2} \vec{x}^{T} A \vec{x}}=\frac{(2 \pi)^{n / 2}}{\sqrt{\operatorname{det} A}}, \quad \int_{\mathbb{R}^{n}} \mathrm{~d} \vec{x} e^{-\frac{1}{2} \vec{x}^{T} A \vec{x}+\vec{b}^{T} \vec{x}}=\frac{(2 \pi)^{n / 2}}{\sqrt{\operatorname{det} A}} e^{\frac{1}{2} \vec{b}^{T} A^{-1} \vec{b}}, \\
& \int_{\mathbb{R}^{n}} \mathrm{~d} \vec{x} x_{i} x_{j} e^{-\frac{1}{2} \vec{x}^{T} A \vec{x}}=\frac{(2 \pi)^{n / 2}}{\sqrt{\operatorname{det} A}}\left(A^{-1}\right)_{i j}, \\
& \int_{\mathbb{R}^{n}} \mathrm{~d} \vec{x} x_{i} x_{j} x_{k} x_{l} e^{-\frac{1}{2} \vec{x}^{T} A \vec{x}}=\frac{(2 \pi)^{n / 2}}{\sqrt{\operatorname{det} A}}\left[\left(A^{-1}\right)_{i j}\left(A^{-1}\right)_{k l}+\left(A^{-1}\right)_{i k}\left(A^{-1}\right)_{j l}+\left(A^{-1}\right)_{i l}\left(A^{-1}\right)_{j k}\right] .
\end{aligned}
$$

- One says that a random variable X is a Gaussian of mean μ and variance $\nu>0$, to be denoted $X \stackrel{\mathrm{~d}}{=} \mathcal{N}(\mu, \nu)$, if it has the density $f_{X}(x)=e^{-\frac{1}{2 \nu}(x-\mu)^{2}} \frac{1}{\sqrt{2 \pi \nu}}$. Then

$$
\mathbb{E}[X]=\mu, \quad \mathbb{E}\left[(X-\mu)^{2}\right]=\nu .
$$

- One says that a vector of random variables $\vec{X}=\left(X_{1}, \ldots, X_{n}\right)$ is a Gaussian of mean $\vec{\mu}$ and covariance matrix C (a real symmetric positive definite $n \times n$ matrix), to be denoted $X \stackrel{\text { d }}{=}$ $\mathcal{N}(\vec{\mu}, C)$, if it has the density $f_{\vec{X}}(\vec{x})=e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} C^{-1}(\vec{x}-\vec{\mu})} \frac{1}{(2 \pi)^{n^{/ 2}} \sqrt{\operatorname{det} C}}$. Then

$$
\mathbb{E}\left[X_{i}\right]=\mu_{i}, \quad \mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]=C_{i j} .
$$

- A random variable X is said to be centered if it has zero mean, $\mathbb{E}[X]=0$.
- If X is a centered Gaussian random variable and $b \in \mathbb{C}$,

$$
\mathbb{E}\left[e^{b X}\right]=e^{\frac{1}{2} b^{2} \mathbb{E}\left[X^{2}\right]} .
$$

- If \vec{X} is a centered Gaussian random vector and $\vec{b} \in \mathbb{C}^{n}$,

$$
\mathbb{E}\left[e^{\sum_{i=1}^{n} b_{i} X_{i}}\right]=e^{\frac{1}{2} \sum_{i, j=1}^{n} b_{i} b_{j} \mathbb{E}\left[X_{i} X_{j}\right]} .
$$

- If X is a centered Gaussian random variable and F an arbitrary function (regular enough) from \mathbb{R} to \mathbb{R},

$$
\mathbb{E}[X F(X)]=\mathbb{E}\left[X^{2}\right] \mathbb{E}\left[F^{\prime}(X)\right] .
$$

- If \vec{X} is a centered Gaussian random variable and F an arbitrary function (regular enough) from \mathbb{R}^{n} to \mathbb{R},

$$
\mathbb{E}\left[X_{i} F\left(X_{1}, \ldots, X_{n}\right)\right]=\sum_{j=1}^{n} \mathbb{E}\left[X_{i} X_{j}\right] \mathbb{E}\left[\left(\partial_{j} F\right)\left(X_{1}, \ldots, X_{n}\right)\right]
$$

