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• If A is an n× n real symmetric positive definite matrix and ~b ∈ C
n,
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• One says that a random variable X is a Gaussian of mean µ and variance ν > 0, to be denoted

X
d
= N (µ, ν), if it has the density fX(x) = e−
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. Then

E[X] = µ , E[(X − µ)2] = ν .

• One says that a vector of random variables ~X = (X1, . . . ,Xn) is a Gaussian of mean ~µ and

covariance matrix C (a real symmetric positive definite n × n matrix), to be denoted X
d
=
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. Then

E[Xi] = µi , E[(Xi − µi)(Xj − µj)] = Cij .

• A random variable X is said to be centered if it has zero mean, E[X] = 0.
• If X is a centered Gaussian random variable and b ∈ C,
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• If ~X is a centered Gaussian random vector and ~b ∈ C
n,
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• If X is a centered Gaussian random variable and F an arbitrary function (regular enough) from
R to R,

E[XF (X)] = E[X2]E[F ′(X)] .

• If ~X is a centered Gaussian random variable and F an arbitrary function (regular enough) from
R
n to R,

E[XiF (X1, . . . ,Xn)] =
n
∑

j=1

E[XiXj]E[(∂jF )(X1, . . . ,Xn)] .
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