ICFP M2 - Statistical physics 2 - TD nº 1

Extreme values distributions Solution of the last exercise

Grégory Schehr, Guilhem Semerjian

January 2020

1. Intuitively, the statement is

$$X_n \approx a_n + b_n Y \approx c_n + d_n Z \Rightarrow Z \approx \frac{a_n - c_n}{d_n} + \frac{b_n}{d_n} Y \Rightarrow \lim_{n \to \infty} \frac{a_n - c_n}{d_n} = A \quad \lim_{n \to \infty} \frac{b_n}{d_n} = B . \quad (1)$$

The precise translation of the statement in terms of distribution functions is: if $F_{X_n}(a_n + b_n x) \to G(x)$ and $F_{X_n}(c_n + d_n x) \to H(x)$ with G and H non-trivial distribution functions, then

$$\frac{b_n}{d_n} \to B \in]0, \infty[, \qquad \frac{a_n - c_n}{d_n} \to A \text{ with } A \text{ finite and } G(x) = H(A + Bx) . \tag{2}$$

2. We choose a_n and b_n such that

$$F_{M_n}(a_n + b_n x) = (F_X(a_n + b_n x))^n \underset{n \to \infty}{\to} G(x) . \tag{3}$$

Fixing a positive integer m, a subsequence of this limit yields

$$F_{M_{mn}}(a_{mn} + b_{mn}x) \underset{n \to \infty}{\to} G(x) . \tag{4}$$

On the other hand,

$$F_{M_{mn}}(a_{mn} + b_{mn}x) = (F_{M_n}(a_{mn} + b_{mn}x))^m , (5)$$

hence

$$F_{M_n}(c_n + d_n x) \underset{n \to \infty}{\longrightarrow} H(x) = G(x)^{\frac{1}{m}} \quad \text{with} \quad c_n = a_{mn} , \quad d_n = b_{mn} .$$
 (6)

From the statement of the previous question, this implies the existence of A(m) and B(m) > 0 such that

$$G(x) = H(A(m) + B(m)x) = G(A(m) + B(m)x)^{\frac{1}{m}}$$
, i.e. $G^{m}(x) = G(A(m) + B(m)x)$. (7)

To generalize this to real s, we notice that (using |u| for the integer part of the real u)

$$F_{M_{\lfloor ns\rfloor}}(a_{\lfloor ns\rfloor} + b_{\lfloor ns\rfloor}x) \underset{n \to \infty}{\to} G(x) \quad \text{and} \quad F_{M_{\lfloor ns\rfloor}}(a_{\lfloor ns\rfloor} + b_{\lfloor ns\rfloor}x) = F_{M_n}(a_{\lfloor ns\rfloor} + b_{\lfloor ns\rfloor}x)^{\frac{\lfloor ns\rfloor}{n}}$$
(8)

hence with $c_n = a_{\lfloor ns \rfloor}$ and $d_n = b_{\lfloor ns \rfloor}$ one has

$$F_{M_n}(c_n + d_n x) = F_{M_{\lfloor ns \rfloor}}(a_{\lfloor ns \rfloor} + b_{\lfloor ns \rfloor} x)^{\frac{n}{\lfloor ns \rfloor}} \xrightarrow[n \to \infty]{} H(x) = G(x)^{\frac{1}{s}},$$
(9)

which implies the existence of A(s) and B(s) with $G^{s}(x) = G(A(s)x + B(s))$.

3. By computing $G^{st}(x)$ in two different ways one gets

$$G^{st}(x) = G(A(st) + B(st)x) = (G^{s}(x))^{t} = G^{t}(A(s) + B(s)x)$$
(10)

$$= G(A(t) + B(t)(A(s) + B(s)x)) = G(A(t) + B(t)A(s) + B(t)B(s)x).$$
(11)

As G(x) is the distribution function of a non-trivial random variable, $G(x) = G(\alpha + \beta x)$ for all x implies $\alpha = 0$ and $\beta = 1$, hence the equations satisfied by the functions A and B

$$\begin{cases}
B(st) = B(s)B(t), \\
A(st) = A(t) + B(t)A(s) = A(s) + B(s)A(t),
\end{cases}$$
(12)

for all s, t > 0, the last equality being obtained by symmetry between s and t.

- 4. Taking the derivative with respect to s of the first equation, then setting t = 1 yields sB'(s) = B(s)B'(1). This implies B(1) = 1, and the differential equation can then be easily integrated to obtain $B(s) = s^{\theta}$, where θ is an arbitrary real parameter. Actually this is the only type of solution of the equation B(st) = B(s)B(t) with the weaker assumption that B(s) is continuous.
- 5. If $\theta = 0$ one has B(s) = 1 for all s, hence A(s) is solution of the functional equation A(st) = A(s) + A(t). We see that $e^{A(s)}$ is thus solution of the same functional equation than the one on B(s) solved in the previous question, which implies $A(s) = -c \ln s$ with c an undetermined constant. We thus have an equation on the distribution function of the limit random variable, $G^s(x) = G(x c \ln s)$. As the left-hand-side is a decreasing function of s one must have c > 0. Taking the logarithm of this equation yields $\ln G(x) = \frac{\ln G(x c \ln s)}{s}$, for all x and s > 0. Choosing x_0 such that $G(x_0) = 1/e$, and s such that $x c \ln s = x_0$, yields $G(x) = \exp[-\exp[-\frac{x x_0}{c}]]$. We have thus proven that if $\theta = 0$ the distribution G is of the Gumbel form, modulo the affine change of variables with parameters x_0 and c.
- 6. If we assume now that $\theta > 0$, hence $B(s) = s^{\theta}$, we need to determine the function A(s) from the equation $A(s) + s^{\theta}A(t) = A(t) + t^{\theta}A(s)$. Taking an arbitrary value of $t \neq 1$ we rewrite this equation as

$$A(s) = (1 - s^{\theta}) \frac{A(t)}{1 - t^{\theta}} . \tag{13}$$

The last fraction being independent of s, we have determined A(s) modulo a multiplicative constant, to be denoted x_0 . This yields $G^s(x) = G(x_0(1-s^\theta)+s^\theta x) = G(x_0+s^\theta(x-x_0))$. We need to constrain x to $x < x_0$ as the left-hand-side is decreasing with s. Taking the logarithm of this equation yields $\ln G(x) = \frac{\ln G(x_0(1-s^\theta)+s^\theta x)}{s}$ for all $x < x_0$ and s > 0. This can be solved by choosing s such that $x_0 + s^\theta(x-x_0) = x_1$ independently of x, which yields $G(x) = \exp\left[-\left(\frac{x_0-x}{w}\right)^{\frac{1}{\theta}}\right]$ with w a constant. This is the Weibull distribution with $\alpha = 1/\theta$, up to the affine change of variables with parameters x_0 and w. The case $\theta < 0$ is treated exactly in the same way, but with now the constraint $x > x_0$.