ICFP M2 - Statistical Physics $2-$ TD no 1
 Extreme values distributions
 Solution of the last exercise

Grégory Schehr, Guilhem Semerjian

January 2020

1. Intuitively, the statement is

$$
\begin{equation*}
X_{n} \approx a_{n}+b_{n} Y \approx c_{n}+d_{n} Z \Rightarrow Z \approx \frac{a_{n}-c_{n}}{d_{n}}+\frac{b_{n}}{d_{n}} Y \Rightarrow \lim _{n \rightarrow \infty} \frac{a_{n}-c_{n}}{d_{n}}=A \quad \lim _{n \rightarrow \infty} \frac{b_{n}}{d_{n}}=B \tag{1}
\end{equation*}
$$

The precise translation of the statement in terms of distribution functions is: if $F_{X_{n}}\left(a_{n}+b_{n} x\right) \rightarrow$ $G(x)$ and $F_{X_{n}}\left(c_{n}+d_{n} x\right) \rightarrow H(x)$ with G and H non-trivial distribution functions, then

$$
\begin{equation*}
\left.\frac{b_{n}}{d_{n}} \rightarrow B \in\right] 0, \infty\left[, \quad \frac{a_{n}-c_{n}}{d_{n}} \rightarrow A \text { with } A \text { finite and } G(x)=H(A+B x)\right. \tag{2}
\end{equation*}
$$

2 . We choose a_{n} and b_{n} such that

$$
\begin{equation*}
F_{M_{n}}\left(a_{n}+b_{n} x\right)=\left(F_{X}\left(a_{n}+b_{n} x\right)\right)^{n} \underset{n \rightarrow \infty}{\rightarrow} G(x) . \tag{3}
\end{equation*}
$$

Fixing a positive integer m, a subsequence of this limit yields

$$
\begin{equation*}
F_{M_{m n}}\left(a_{m n}+b_{m n} x\right) \underset{n \rightarrow \infty}{\rightarrow} G(x) . \tag{4}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
F_{M_{m n}}\left(a_{m n}+b_{m n} x\right)=\left(F_{M_{n}}\left(a_{m n}+b_{m n} x\right)\right)^{m}, \tag{5}
\end{equation*}
$$

hence

$$
\begin{equation*}
F_{M_{n}}\left(c_{n}+d_{n} x\right) \underset{n \rightarrow \infty}{\rightarrow} H(x)=G(x)^{\frac{1}{m}} \quad \text { with } \quad c_{n}=a_{m n}, \quad d_{n}=b_{m n} \tag{6}
\end{equation*}
$$

From the statement of the previous question, this implies the existence of $A(m)$ and $B(m)>0$ such that

$$
\begin{equation*}
G(x)=H(A(m)+B(m) x)=G(A(m)+B(m) x)^{\frac{1}{m}}, \quad \text { i.e. } \quad G^{m}(x)=G(A(m)+B(m) x) \tag{7}
\end{equation*}
$$

To generalize this to real s, we notice that (using $\lfloor u\rfloor$ for the integer part of the real u)

$$
\begin{equation*}
F_{M_{\lfloor n s\rfloor}}\left(a_{\lfloor n s\rfloor}+b_{\lfloor n s\rfloor} x\right) \underset{n \rightarrow \infty}{\rightarrow} G(x) \quad \text { and } \quad F_{M_{\lfloor n s\rfloor}}\left(a_{\lfloor n s\rfloor}+b_{\lfloor n s\rfloor} x\right)=F_{M_{n}}\left(a_{\lfloor n s\rfloor}+b_{\lfloor n s\rfloor} x\right)^{\frac{\lfloor n s\rfloor}{n}} \tag{8}
\end{equation*}
$$

hence with $c_{n}=a_{\lfloor n s\rfloor}$ and $d_{n}=b_{\lfloor n s\rfloor}$ one has

$$
\begin{equation*}
F_{M_{n}}\left(c_{n}+d_{n} x\right)=F_{M_{\lfloor n s\rfloor}}\left(a_{\lfloor n s\rfloor}+b_{\lfloor n s\rfloor} x\right)^{\frac{n}{\lfloor n s\rfloor}} \underset{n \rightarrow \infty}{\rightarrow} H(x)=G(x)^{\frac{1}{s}} \tag{9}
\end{equation*}
$$

which implies the existence of $A(s)$ and $B(s)$ with $G^{s}(x)=G(A(s) x+B(s))$.
3. By computing $G^{s t}(x)$ in two different ways one gets

$$
\begin{align*}
G^{s t}(x) & =G(A(s t)+B(s t) x)=\left(G^{s}(x)\right)^{t}=G^{t}(A(s)+B(s) x) \tag{10}\\
& =G(A(t)+B(t)(A(s)+B(s) x))=G(A(t)+B(t) A(s)+B(t) B(s) x) \tag{11}
\end{align*}
$$

As $G(x)$ is the distribution function of a non-trivial random variable, $G(x)=G(\alpha+\beta x)$ for all x implies $\alpha=0$ and $\beta=1$, hence the equations satisfied by the functions A and B

$$
\left\{\begin{array}{l}
B(s t)=B(s) B(t) \tag{12}\\
A(s t)=A(t)+B(t) A(s)=A(s)+B(s) A(t)
\end{array}\right.
$$

for all $s, t>0$, the last equality being obtained by symmetry between s and t.
4. Taking the derivative with respect to s of the first equation, then setting $t=1$ yields $s B^{\prime}(s)=$ $B(s) B^{\prime}(1)$. This implies $B(1)=1$, and the differential equation can then be easily integrated to obtain $B(s)=s^{\theta}$, where θ is an arbitrary real parameter. Actually this is the only type of solution of the equation $B(s t)=B(s) B(t)$ with the weaker assumption that $B(s)$ is continuous.
5. If $\theta=0$ one has $B(s)=1$ for all s, hence $A(s)$ is solution of the functional equation $A(s t)=$ $A(s)+A(t)$. We see that $e^{A(s)}$ is thus solution of the same functional equation than the one on $B(s)$ solved in the previous question, which implies $A(s)=-c \ln s$ with c an undetermined constant. We thus have an equation on the distribution function of the limit random variable, $G^{s}(x)=G(x-c \ln s)$. As the left-hand-side is a decreasing function of s one must have $c>0$. Taking the logarithm of this equation yields $\ln G(x)=\frac{\ln G(x-c \ln s)}{s}$, for all x and $s>0$. Choosing x_{0} such that $G\left(x_{0}\right)=1 / e$, and s such that $x-c \ln s=x_{0}$, yields $G(x)=\exp \left[-\exp \left[-\frac{x-x_{0}}{c}\right]\right]$. We have thus proven that if $\theta=0$ the distribution G is of the Gumbel form, modulo the affine change of variables with parameters x_{0} and c.
6. If we assume now that $\theta>0$, hence $B(s)=s^{\theta}$, we need to determine the function $A(s)$ from the equation $A(s)+s^{\theta} A(t)=A(t)+t^{\theta} A(s)$. Taking an arbitrary value of $t \neq 1$ we rewrite this equation as

$$
\begin{equation*}
A(s)=\left(1-s^{\theta}\right) \frac{A(t)}{1-t^{\theta}} \tag{13}
\end{equation*}
$$

The last fraction being independent of s, we have determined $A(s)$ modulo a multiplicative constant, to be denoted x_{0}. This yields $G^{s}(x)=G\left(x_{0}\left(1-s^{\theta}\right)+s^{\theta} x\right)=G\left(x_{0}+s^{\theta}\left(x-x_{0}\right)\right)$. We need to constrain x to $x<x_{0}$ as the left-hand-side is decreasing with s. Taking the logarithm of this equation yields $\ln G(x)=\frac{\ln G\left(x_{0}\left(1-s^{\theta}\right)+s^{\theta} x\right)}{s}$ for all $x<x_{0}$ and $s>0$. This can be solved by choosing s such that $x_{0}+s^{\theta}\left(x-x_{0}\right)=x_{1}$ independently of x, which yields $G(x)=$ $\exp \left[-\left(\frac{x_{0}-x}{w}\right)^{\frac{1}{\theta}}\right]$ with w a constant. This is the Weibull distribution with $\alpha=1 / \theta$, up to the affine change of variables with parameters x_{0} and w. The case $\theta<0$ is treated exactly in the same way, but with now the constraint $x>x_{0}$.

