ICFP M2 - Statistical physics 2 Homework no 1

Grégory Schehr, Guilhem Semerjian

January 2020

In the TD 1 we have studied the distribution of the maximum M_n of a large number n of independent and identically distributed random variables X_1, \ldots, X_n . One can investigate more detailed extremal properties of such large samples of random variables, for instance:

- what is the law of the second largest variable among X_1, \ldots, X_n ?
- what is the law of the k-th largest variable among X_1, \ldots, X_n , for arbitrary k?
- what is the joint law of the k largest elements in X_1, \ldots, X_n ? (you can convince yourself that they are indeed correlated)
- is it possible to answer this last question in the limit $k \to \infty$ (after $n \to \infty$)?

To answer some of these questions we suggest the following approach:

- from the independent random variables X_1, \ldots, X_n define $\widehat{X}_1, \ldots, \widehat{X}_n$ with $\widehat{X}_i = (X_i a_n)/b_n$, where a_n and b_n are the series introduced in the TD that define the rescaling under which $(M_n a_n)/b_n$ has a non-trivial limit.
- call $N_n([u, v])$ the (random) number of points \widehat{X}_i among $\widehat{X}_1, \dots, \widehat{X}_n$ which falls in the interval [u, v].
- determine the probability distribution of $N_n([u,v])$, and of its limit N([u,v]) as $n\to\infty$.
- characterize the joint law of $N_n([u_1, v_1]), \ldots, N_n([u_p, v_p])$ when the intervals $[u_i, v_i]$ are disjoint, and then take the limit $n \to \infty$.
- find back from this approach the distribution of the maximum derived in the TD, and generalize this result to the k-th maximum.
- conditionally on the event N([u,v]) = p, describe the joint law for the p points \widehat{X}_i that fall in the interval [u,v].