ICFP M2 - Statistical physics 2
 Homework n ${ }^{0} 1$

Grégory Schehr, Guilhem Semerjian
January 2020

In the TD 1 we have studied the distribution of the maximum M_{n} of a large number n of independent and identically distributed random variables X_{1}, \ldots, X_{n}. One can investigate more detailed extremal properties of such large samples of random variables, for instance :

- what is the law of the second largest variable among X_{1}, \ldots, X_{n} ?
- what is the law of the k-th largest variable among X_{1}, \ldots, X_{n}, for arbitrary k ?
- what is the joint law of the k largest elements in X_{1}, \ldots, X_{n} ? (you can convince yourself that they are indeed correlated)
- is it possible to answer this last question in the limit $k \rightarrow \infty$ (after $n \rightarrow \infty)$?

To answer some of these questions we suggest the following approach :

- from the independent random variables X_{1}, \ldots, X_{n} define $\widehat{X}_{1}, \ldots, \widehat{X}_{n}$ with $\widehat{X}_{i}=\left(X_{i}-a_{n}\right) / b_{n}$, where a_{n} and b_{n} are the series introduced in the TD that define the rescaling under which $\left(M_{n}-a_{n}\right) / b_{n}$ has a non-trivial limit.
- call $N_{n}([u, v])$ the (random) number of points \widehat{X}_{i} among $\widehat{X}_{1}, \ldots, \widehat{X}_{n}$ which falls in the interval $[u, v]$.
- determine the probability distribution of $N_{n}([u, v])$, and of its limit $N([u, v])$ as $n \rightarrow \infty$.
- characterize the joint law of $N_{n}\left(\left[u_{1}, v_{1}\right]\right), \ldots, N_{n}\left(\left[u_{p}, v_{p}\right]\right)$ when the intervals $\left[u_{i}, v_{i}\right]$ are disjoint, and then take the limit $n \rightarrow \infty$.
- find back from this approach the distribution of the maximum derived in the TD, and generalize this result to the k-th maximum.
- conditionally on the event $N([u, v])=p$, describe the joint law for the p points \widehat{X}_{i} that fall in the interval $[u, v]$.

