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We consider a statistical mechanics model with M = 2V configurations ¢ indexed by N Ising
spins, ¢ = (01,...,0n5) € {—1,1}". The energy of each configuration is denoted H(c), the system
is in equilibrium with an heat bath of inverse temperature 3, the probability to find the system

in the configuration ¢ is thus p(c) = e (@ /Z(B), with the partition function Z(8) = S e #H(@)

normalizing these probabilities.

When the system is disordered the energies H(o) are random variables, as well as the partition
function. We recall the definition of the annealed and quenched free-energies:
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We consider in this problem the simplest of such disordered system, the Random Energy Model
(REM), introduced by Bernard Derrida in 1980, in which the energies H(g) are M independent
N

identically distributed Gaussians of zero mean and variance 5.

1 Preamble : concentration of random variables

1. Prove the Markov inequality: if X is a positive random variable with finite average,
MXg@g%Ew] Va>0. 2)

2. Deduce from it the Chebychev inequality for a random variable X admitting a variance,
PIX ~ E[X]| > ¢ yVarlX]) < o 3

3. One is often interested in integer valued random variables, X = 0,1,.... As a consequence of
the Markov inequality one has
PX > 0] <E[X] : (4)

if the average of X is very small then X is with high probability equal to 0. On the other hand if
the average of X is very large it is not always the case that X is positive with high probability:
its variance should not be too large for this to be true. Show as a consequence of the Chebychev
inequality that
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Using the Cauchy-Schwarz inequality obtain a stronger bound:
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these two inequalities being called the second and first moment method, respectively.



2 The free-energy of the REM

1.

2.

Compute the annealed free-energy of the model.

Denote N (u,du) the random variable counting the number of configurations ¢ with intensive
energies in a small interval of length du around u, i.e. with H(o) € [Nu, N(u + du)]. What is
the law of this random variable 7 Give its average value and its variance.

. Deduce that for typical realizations of the disorder, N is close to its typical value, with at the

leading exponential order,
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0 otherwise

MYP(U” du) = {

where u. = VIn2 and sy, (u) = In2 — u? is the microcanonical entropy.

. Conclude that the quenched free-energy reads
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with S. = 2vIn2 the critical inverse temperature of the model. Compare with the annealed
result.

. Give the values of the energy and entropy in the high and low temperature phases. What is the

thermodynamic order of the transition ?

. What is the groundstate energy density of the model 7 Check the agreement of your answer

with the results of the TD 1 on the extremes of i.i.d. random variables.

3 The structure of p(g)

Let us denote Y = 3" p(z)? the probability to find two independent copies of the system in the same
g

configuration.
1. What would be the value of Y if p(g) were uniform on a subset of Mg configurations ?
2. Express Y in terms of Z(24) and Z (). Deduce that in the high-temperature phase Y is typically
exponentially small.
3. To study the low temperature phase we need a more precise approach. We recall if X is a
centered Gaussian random variable and F' an arbitrary function, then
EXF(X)] =EX* E[F'(X)] . (9)
Use this identity to obtain:
& S Ep(e)H(e) = 51 - V] (10)
N < - 2 )
4. Conclude that
0 if T >1T,
lim E[Y] = . c (11)
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The transition at T is often called a “condensation”: in the low-temperature phase the dominant
configurations of the Gibbs measure covers a sub-exponential subset of the configuration space.



