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We consider a statistical mechanics model with M = 2N configurations σ indexed by N Ising
spins, σ = (σ1, . . . , σN ) ∈ {−1, 1}N . The energy of each configuration is denoted H(σ), the system
is in equilibrium with an heat bath of inverse temperature β, the probability to find the system
in the configuration σ is thus p(σ) = e−βH(σ)/Z(β), with the partition function Z(β) =

∑

σ

e−βH(σ)

normalizing these probabilities.

When the system is disordered the energies H(σ) are random variables, as well as the partition
function. We recall the definition of the annealed and quenched free-energies:

fa(β) = − 1

β
lim

N→∞

1

N
lnE[Z(β)] , fq(β) = − 1

β
lim

N→∞

1

N
E[lnZ(β)] . (1)

We consider in this problem the simplest of such disordered system, the Random Energy Model
(REM), introduced by Bernard Derrida in 1980, in which the energies H(σ) are M independent

identically distributed Gaussians of zero mean and variance N
2 .

1 Preamble : concentration of random variables

1. Prove the Markov inequality: if X is a positive random variable with finite average,

P[X ≥ a] ≤ 1

a
E[X] ∀ a > 0 . (2)

2. Deduce from it the Chebychev inequality for a random variable X admitting a variance,

P[|X − E[X]| ≥ t
√

Var[X]] ≤ 1

t2
. (3)

3. One is often interested in integer valued random variables, X = 0, 1, . . . . As a consequence of
the Markov inequality one has

P[X > 0] ≤ E[X] : (4)

if the average of X is very small then X is with high probability equal to 0. On the other hand if
the average of X is very large it is not always the case that X is positive with high probability:
its variance should not be too large for this to be true. Show as a consequence of the Chebychev
inequality that

P[X = 0] ≤ Var[X]

E[X]2
. (5)

Using the Cauchy-Schwarz inequality obtain a stronger bound:

E[X]2

E[X2]
≤ P[X > 0] ≤ E[X] , (6)

these two inequalities being called the second and first moment method, respectively.
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2 The free-energy of the REM

1. Compute the annealed free-energy of the model.

2. Denote N (u,du) the random variable counting the number of configurations σ with intensive
energies in a small interval of length du around u, i.e. with H(σ) ∈ [Nu,N(u + du)]. What is
the law of this random variable ? Give its average value and its variance.

3. Deduce that for typical realizations of the disorder, N is close to its typical value, with at the
leading exponential order,

Ntyp(u,du) =

{

eNsm(u)du if u ∈ [−uc, uc]

0 otherwise
(7)

where uc =
√
ln 2 and sm(u) = ln 2− u2 is the microcanonical entropy.

4. Conclude that the quenched free-energy reads

fq(β) = inf
u∈[−uc,uc]

[

u− 1

β
sm(u)

]

=

{

−β
4 − ln 2

β
if β < βc

−
√
ln 2 if β > βc

, (8)

with βc = 2
√
ln 2 the critical inverse temperature of the model. Compare with the annealed

result.

5. Give the values of the energy and entropy in the high and low temperature phases. What is the
thermodynamic order of the transition ?

6. What is the groundstate energy density of the model ? Check the agreement of your answer
with the results of the TD 1 on the extremes of i.i.d. random variables.

3 The structure of p(σ)

Let us denote Y =
∑

σ

p(σ)2 the probability to find two independent copies of the system in the same

configuration.

1. What would be the value of Y if p(σ) were uniform on a subset of Meff configurations ?

2. Express Y in terms of Z(2β) and Z(β). Deduce that in the high-temperature phase Y is typically
exponentially small.

3. To study the low temperature phase we need a more precise approach. We recall if X is a
centered Gaussian random variable and F an arbitrary function, then

E[XF (X)] = E[X2] E
[

F ′(X)
]

. (9)

Use this identity to obtain:

1

N

∑

σ

E [p(σ)H(σ)] = −β

2
E[1− Y ] . (10)

4. Conclude that

lim
N→∞

E[Y ] =

{

0 if T > Tc

1− T
Tc

if T < Tc

. (11)

The transition at Tc is often called a “condensation”: in the low-temperature phase the dominant
configurations of the Gibbs measure covers a sub-exponential subset of the configuration space.
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