ICFP M2 - Statistical PhYsics 2
 Homework n ${ }^{\circ} 5$
 Langevin and Fokker-Planck equations

Grégory Schehr, Guilhem Semerjian

March 2020

This exercise is a preparation for the next TD on the Dyson Brownian Motion for random matrices; its goal is to recall you basic facts on the Langevin and Fokker-Planck equations.

Consider a particle that moves in one dimension according to the (overdamped) Langevin equation :

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=-V^{\prime}(x(t))+\eta(t) \tag{1}
\end{equation*}
$$

where the first term is a deterministic conservative force deriving from the potential energy $V(x)$, and the second is a random force. We assume η to be a Gaussian white noise characterized by its first two moments, $\mathbb{E}[\eta(t)]=0, \mathbb{E}\left[\eta(t) \eta\left(t^{\prime}\right)\right]=2 T \delta\left(t-t^{\prime}\right)$ with T the temperature of the environment in contact with the particle.

As a consequence of the Langevin equation the probability density for the position of the particle, $P(x, t)$, evolves according to the Fokker-Planck equation,

$$
\begin{equation*}
\frac{\partial P}{\partial t}=-\frac{\partial J}{\partial x}, \quad \text { with } \quad J(x, t)=-V^{\prime}(x) P(x, t)-T \frac{\partial P}{\partial x} \tag{2}
\end{equation*}
$$

1. Interpret the Fokker-Planck equation as a conservation law, and specify the origin of the two terms in J.
2. Describe the random variable

$$
\begin{equation*}
\Delta x=\int_{t}^{t+\Delta t} \mathrm{~d} t^{\prime} \eta\left(t^{\prime}\right), \tag{3}
\end{equation*}
$$

for a given time-interval Δt.
3. Give the solution of the Langevin and Fokker-Planck equations, with the initial condition $x(t=0)=x_{0}$, hence $P(x, t=0)=\delta\left(x-x_{0}\right)$, in the two extreme cases :
(a) $T=0$.
(b) $V(x)$ independent of x.
4. Check that the Gibbs-Boltzman distribution $P_{\mathrm{GB}}(x)=\frac{1}{Z} e^{-\beta V(x)}$, with $\beta=\frac{1}{T}$, is a stationary solution of (2).
5. When the potential is quadratic, $V(x)=\frac{1}{2} x^{2}$, the random trajectory $x(t)$ is called an OrnsteinUhlenbeck stochastic process. Give an explicit solution of $x(t)$ as a function of the trajectory of the noise η (taking the initial condition $x(t)=x_{0}$ deterministic). Conclude that, for a given time $t, x(t)$ is a Gaussian random variable; specifiy its mean and variance.

