ICFP M2 - Statistical physics 2 - TD n ${ }^{\circ} 2$ The Random Energy Model - Solution of the first part

Grégory Schehr, Guilhem Semerjian

January 2020

1 Preamble : concentration of random variables

1. Denoting $\mathbb{I}(E)$ the indicator function of the event E we bound the expected value of X as

$$
\mathbb{E}[X]=\mathbb{E}[X \mathbb{I}(X \geq a)]+\mathbb{E}[X \mathbb{I}(X<a)] \geq \mathbb{E}[X \mathbb{I}(X \geq a)] \geq a \mathbb{E}[\mathbb{I}(X \geq a)]=a \mathbb{P}[X \geq a]
$$

where the first inequality holds because X is a positive random variable. The Markov inequality follows by dividing by a.
2. If we apply the Markov inequality to the random variable $Y=(X-\mathbb{E}[X])^{2}$, which is clearly positive, we get

$$
\begin{equation*}
\mathbb{P}[Y \geq a] \leq \frac{1}{a} \mathbb{E}[Y]=\frac{1}{a} \operatorname{Var}[X] . \tag{1}
\end{equation*}
$$

We can then obtain the Chebychev inequality as

$$
\begin{equation*}
\mathbb{P}[|X-\mathbb{E}[X]| \geq t \sqrt{\operatorname{Var}[X]}]=\mathbb{P}\left[(X-\mathbb{E}[X])^{2} \geq t^{2} \operatorname{Var}[X]\right] \leq \frac{1}{t^{2}}, \tag{2}
\end{equation*}
$$

applying (1) with $a=t^{2} \operatorname{Var}[X]$.
3. Note that for a random variable X taking values in $0,1, \ldots$, one has $X>0$ if and only if $X \geq 1$. Hence the Markov inequality with $a=1$ immediately gives

$$
\mathbb{P}[X>0] \leq \mathbb{E}[X]
$$

From Chebychev inequality with $t=\frac{\mathbb{E}[X]}{\sqrt{\operatorname{Var}[X]}}$ we obtain, for any random variable admitting a variance,

$$
\begin{equation*}
\mathbb{P}[|X-\mathbb{E}[X]| \geq \mathbb{E}[X]] \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}} \tag{3}
\end{equation*}
$$

As $|X-\mathbb{E}[X]| \geq \mathbb{E}[X] \Leftrightarrow X \leq 0$ or $X \geq 2 \mathbb{E}[X]$, this can be rewritten

$$
\begin{equation*}
\mathbb{P}[X \leq 0]+\mathbb{P}[X \geq 2 \mathbb{E}[X]] \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}} \tag{4}
\end{equation*}
$$

For the non-negative integer valued random variable considered here $X \leq 0$ if and only if $X=0$, and the probability of $X \geq 2 \mathbb{E}[X]$ is a non-negative number, hence

$$
\begin{equation*}
\mathbb{P}[X=0] \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}}, \quad \text { or equivalently } \quad \mathbb{P}[X>0] \geq 1-\frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}} . \tag{5}
\end{equation*}
$$

To obtain an improved bound we shall use the Cauchy-Schwarz inequality, which states that for two random variables A and B one has $\mathbb{E}[A B] \leq \sqrt{\mathbb{E}\left[A^{2}\right]} \sqrt{\mathbb{E}\left[B^{2}\right]}$. Applying this to $A=X$, $B=\mathbb{I}(X>0)$ yields, for these non-negative integer valued random variables X,

$$
\begin{equation*}
\mathbb{E}[X]=\mathbb{E}[X \mathbb{I}(X>0)] \leq \sqrt{\mathbb{E}\left[X^{2}\right]} \sqrt{\mathbb{E}\left[\mathbb{I}(X>0)^{2}\right]}=\sqrt{\mathbb{E}\left[X^{2}\right]} \sqrt{\mathbb{P}[X>0]} \tag{6}
\end{equation*}
$$

in the last step we used the fact that the square of an indicator function is equal to itself. Squaring this inequality and dividing it by $\mathbb{E}\left[X^{2}\right]$ gives finally

$$
\begin{equation*}
\frac{\mathbb{E}[X]^{2}}{\mathbb{E}\left[X^{2}\right]} \leq \mathbb{P}[X>0], \quad \text { i.e. } \quad \mathbb{P}[X>0] \geq 1-\frac{\operatorname{Var}[X]}{\mathbb{E}\left[X^{2}\right]} \tag{7}
\end{equation*}
$$

which is stronger than the inequality (5) obtained from Chebychev as $\mathbb{E}\left[X^{2}\right] \geq \mathbb{E}[X]^{2}$.

