ICFP M2 - Statistical Physics 2 - TD no 4 Erdös-Rényi random graphs - Solution to the last questions

Grégory Schehr, Guilhem Semerjian

February 9, 2020

2 Branching processes

5. Study of the critical case $c=1$.
(a) During the TD, we obtained the equation satisfied by the generating function of $S, g(x)=$ $\mathbb{E}\left(x^{S}\right)$, namely

$$
\begin{equation*}
g(x)=x e^{-c(1-g(x))} \tag{1}
\end{equation*}
$$

together with (for $c=1) g(1)=1$ and $\lim _{x \rightarrow 1} g^{\prime}(x)=+\infty$.
(b) We set $x=1-\epsilon$ and write $g(x=1-\epsilon)=1-a \epsilon^{\mu}+o\left(\epsilon^{\mu}\right)$ as $\epsilon \rightarrow 0$. By inserting this ansatz in (1) with $c=1$ one obtains

$$
\begin{equation*}
1-a \epsilon^{\mu}+o(\epsilon)=(1-\epsilon)\left(1-a \epsilon^{\mu}+\frac{1}{2} a^{2} \epsilon^{2 \mu}+o\left(\epsilon^{2 \mu}\right)\right) \tag{2}
\end{equation*}
$$

At lowest order in ϵ, one can check that the only consistent solution to (2) is

$$
0=\frac{a^{2}}{2} \epsilon^{2 \mu}-\epsilon \Longrightarrow\left\{\begin{array}{l}
\quad \mu=\frac{1}{2} \tag{3}\\
a=\sqrt{2}
\end{array}\right.
$$

(c) One thus obtained $g(x)=1-\sqrt{2(1-x)}$, as $x \rightarrow 1$, which implies

$$
\begin{equation*}
g^{\prime}(x)=\frac{1}{\sqrt{2}}(1-x)^{-1 / 2}+o\left((1-x)^{-1 / 2}\right) \tag{4}
\end{equation*}
$$

Recalling the definition of $g(x)$, Eq. (4) reads

$$
\begin{equation*}
g^{\prime}(x)=\sum_{s=1}^{\infty} s P(s) x^{s-1}=\frac{1}{\sqrt{2}}(1-x)^{-1 / 2}+o\left((1-x)^{-1 / 2}\right) \tag{5}
\end{equation*}
$$

where $P(s)=\mathbb{P}(S=s)$. The fact that $g^{\prime}(x)$ diverges as $x \rightarrow 1$ indicates that $s P(s)$ decays slower that $1 / s$ for large s, such that the series $\sum_{s \geq 1} s P(s)$ is divergent. We thus assume that $P(s) \sim A / s^{\tau-1}$ for $s \rightarrow \infty$ with some amplitude A and exponent τ to be determined from (5). For this purpose, it is convenient to set $x=e^{-p}$, such that $x \rightarrow 1$ corresponds to $p \rightarrow 0$. In terms of p, the above relation (5) reads, for small p

$$
\begin{equation*}
e^{p} \sum_{s=1}^{\infty} s \mathbb{P}(S=s) e^{-s p}=\frac{1}{\sqrt{2}} p^{-1 / 2}+o\left(p^{-1 / 2}\right) \tag{6}
\end{equation*}
$$

In the small p limit, one can replace the discrete sum over s by a (Riemann) integral $e^{p} \sum_{s=1}^{\infty} s \mathbb{P}(S=$ $s) e^{-s p} \simeq \int_{1}^{\infty} s \mathbb{P}(S=s) e^{-s p} d s$. By performing the change of variable $u=p s$, and substituting $P(s=u / p) \sim A(u / p)^{1-\tau}$ in the limit $p \rightarrow 0$, Eq. (7) finally leads to

$$
\begin{equation*}
A \Gamma(3-\tau) p^{\tau-3}=\frac{1}{\sqrt{2}} p^{-1 / 2}, p \rightarrow 0 \tag{7}
\end{equation*}
$$

where we have used that $\int_{0}^{\infty} u^{2-\tau} e^{-u} d u=\Gamma(3-\tau)$. Hence Eq. (7) gives

$$
\begin{equation*}
\tau=\frac{5}{2}, \quad A=\frac{1}{\sqrt{2 \pi}} . \tag{8}
\end{equation*}
$$

(d) The probability $\hat{P}(s)$ is the average fraction of components of an Erdös-Rényi random graph that contains exactly s vertices. On the other hand $P(s)$, that we just computed, is the average fraction of sites that belongs to a component of size s, hence one has $P(s) \propto s \hat{P}(s)$, i.e. (since it is normalised)

$$
\begin{equation*}
P(s)=\frac{s \hat{P}(s)}{\sum_{s^{\prime}=1}^{\infty} s^{\prime} \hat{P}\left(s^{\prime}\right)} \tag{9}
\end{equation*}
$$

If needed, it might be useful to convince yourself of this relation (9) on a simple example (for instance the case $N=7$ with one component of size $S=3$ and two of size $S=2$). Hence, from (9), one obtains $\hat{P}(s) \propto s^{-5 / 2}$ for large s.
(e) To estimate the scaling (with $N \gg 1$) of the size \mathcal{S}_{N} of the largest component at the critical point $c=1$, let us assume that the sizes of the different connected components are i.i.d. variables, their common distribution being $\hat{P}(s)$ - this is an approximation since the sizes of the different connected components are actually correlated. In addition, we use the fact that there are $\mathcal{O}(N)$ connected components. Hence, from the results of the first lecture on extreme value statistics, since $\hat{P}(s)$ has an algebraic tail with exponent $\tau=5 / 2$, one finds that $\mathcal{S}_{N} \sim N^{2 / 3}$, which coincides with the exact result.

