ICFP M2 - STATISTICAL PHYSICS 2 - TD no 4 Erdös-Rényi random graphs - Solution to the last questions

Grégory Schehr, Guilhem Semerjian

February 9, 2020

2 Branching processes

- 5. Study of the critical case c = 1.
- (a) During the TD, we obtained the equation satisfied by the generating function of S, $g(x) = \mathbb{E}(x^S)$, namely

$$g(x) = xe^{-c(1-g(x))}$$
, (1)

together with (for c = 1) g(1) = 1 and $\lim_{x \to 1} g'(x) = +\infty$.

(b) We set $x = 1 - \epsilon$ and write $g(x = 1 - \epsilon) = 1 - a\epsilon^{\mu} + o(\epsilon^{\mu})$ as $\epsilon \to 0$. By inserting this ansatz in (1) with c = 1 one obtains

$$1 - a\epsilon^{\mu} + o(\epsilon) = (1 - \epsilon) \left(1 - a\epsilon^{\mu} + \frac{1}{2}a^{2}\epsilon^{2\mu} + o(\epsilon^{2\mu}) \right). \tag{2}$$

At lowest order in ϵ , one can check that the only consistent solution to (2) is

$$0 = \frac{a^2}{2} \epsilon^{2\mu} - \epsilon \Longrightarrow \begin{cases} \mu = \frac{1}{2}, \\ a = \sqrt{2}. \end{cases}$$
 (3)

(c) One thus obtained $g(x) = 1 - \sqrt{2(1-x)}$, as $x \to 1$, which implies

$$g'(x) = \frac{1}{\sqrt{2}}(1-x)^{-1/2} + o((1-x)^{-1/2}).$$
(4)

Recalling the definition of g(x), Eq. (4) reads

$$g'(x) = \sum_{s=1}^{\infty} s P(s) x^{s-1} = \frac{1}{\sqrt{2}} (1-x)^{-1/2} + o((1-x)^{-1/2}),$$
 (5)

where $P(s) = \mathbb{P}(S = s)$. The fact that g'(x) diverges as $x \to 1$ indicates that s P(s) decays slower that 1/s for large s, such that the series $\sum_{s \ge 1} s P(s)$ is divergent. We thus assume that $P(s) \sim A/s^{\tau-1}$ for $s \to \infty$ with some amplitude A and exponent τ to be determined from (5). For this purpose, it is convenient to set $x = e^{-p}$, such that $x \to 1$ corresponds to $p \to 0$. In terms of p, the above relation (5) reads, for small p

$$e^p \sum_{s=1}^{\infty} s \, \mathbb{P}(S=s) e^{-sp} = \frac{1}{\sqrt{2}} p^{-1/2} + o(p^{-1/2}) \ .$$
 (6)

In the small p limit, one can replace the discrete sum over s by a (Riemann) integral $e^p \sum_{s=1}^{\infty} s \mathbb{P}(S=s)e^{-sp} \simeq \int_{1}^{\infty} s \mathbb{P}(S=s)e^{-sp}ds$. By performing the change of variable u=ps, and substituting $P(s=u/p) \sim A(u/p)^{1-\tau}$ in the limit $p \to 0$, Eq. (7) finally leads to

$$A\Gamma(3-\tau)p^{\tau-3} = \frac{1}{\sqrt{2}}p^{-1/2} , \ p \to 0 ,$$
 (7)

where we have used that $\int_0^\infty u^{2-\tau}e^{-u}\,du = \Gamma(3-\tau)$. Hence Eq. (7) gives

$$\tau = \frac{5}{2} \,, \quad A = \frac{1}{\sqrt{2\pi}} \,.$$
(8)

(d) The probability $\hat{P}(s)$ is the average fraction of components of an Erdös-Rényi random graph that contains exactly s vertices. On the other hand P(s), that we just computed, is the average fraction of sites that belongs to a component of size s, hence one has $P(s) \propto s\hat{P}(s)$, i.e. (since it is normalised)

$$P(s) = \frac{s\hat{P}(s)}{\sum_{s'=1}^{\infty} s'\hat{P}(s')} . \tag{9}$$

If needed, it might be useful to convince yourself of this relation (9) on a simple example (for instance the case N=7 with one component of size S=3 and two of size S=2). Hence, from (9), one obtains $\hat{P}(s) \propto s^{-5/2}$ for large s.

(e) To estimate the scaling (with $N \gg 1$) of the size \mathcal{S}_N of the largest component at the critical point c=1, let us assume that the sizes of the different connected components are i.i.d. variables, their common distribution being $\hat{P}(s)$ – this is an approximation since the sizes of the different connected components are actually correlated. In addition, we use the fact that there are $\mathcal{O}(N)$ connected components. Hence, from the results of the first lecture on extreme value statistics, since $\hat{P}(s)$ has an algebraic tail with exponent $\tau = 5/2$, one finds that $\mathcal{S}_N \sim N^{2/3}$, which coincides with the exact result.