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2 Branching processes

5. Study of the critical case c = 1.

(a) During the TD, we obtained the equation satisfied by the generating function of S, g(x) =
E(xS), namely

g(x) = xe−c(1−g(x)) , (1)

together with (for c = 1) g(1) = 1 and limx→
<
1 g
′(x) = +∞.

(b) We set x = 1− ε and write g(x = 1− ε) = 1− aεµ + o(εµ) as ε→ 0. By inserting this ansatz
in (1) with c = 1 one obtains

1− aεµ + o(ε) = (1− ε)
(

1− aεµ +
1

2
a2ε2µ + o(ε2µ)

)
. (2)

At lowest order in ε, one can check that the only consistent solution to (2) is

0 =
a2

2
ε2µ − ε =⇒

{
µ = 1

2 ,

a =
√

2 .
(3)

(c) One thus obtained g(x) = 1−
√

2(1− x), as x→ 1, which implies

g′(x) =
1√
2

(1− x)−1/2 + o((1− x)−1/2) . (4)

Recalling the definition of g(x), Eq. (4) reads

g′(x) =
∞∑
s=1

s P (s)xs−1 =
1√
2

(1− x)−1/2 + o((1− x)−1/2) , (5)

where P (s) = P(S = s). The fact that g′(x) diverges as x→ 1 indicates that s P (s) decays slower that
1/s for large s, such that the series

∑
s≥1 s P (s) is divergent. We thus assume that P (s) ∼ A/sτ−1

for s→∞ with some amplitude A and exponent τ to be determined from (5). For this purpose, it is
convenient to set x = e−p, such that x → 1 corresponds to p → 0. In terms of p, the above relation
(5) reads, for small p

ep
∞∑
s=1

sP(S = s)e−sp =
1√
2
p−1/2 + o(p−1/2) . (6)

In the small p limit, one can replace the discrete sum over s by a (Riemann) integral ep
∑∞

s=1 sP(S =
s)e−sp '

∫∞
1 sP(S = s)e−spds. By performing the change of variable u = ps, and substituting

P (s = u/p) ∼ A(u/p)1−τ in the limit p→ 0, Eq. (7) finally leads to

AΓ(3− τ)pτ−3 =
1√
2
p−1/2 , p→ 0 , (7)
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where we have used that
∫∞
0 u2−τe−u du = Γ(3− τ). Hence Eq. (7) gives

τ =
5

2
, A =

1√
2π

. (8)

(d) The probability P̂ (s) is the average fraction of components of an Erdös-Rényi random graph
that contains exactly s vertices. On the other hand P (s), that we just computed, is the average
fraction of sites that belongs to a component of size s, hence one has P (s) ∝ sP̂ (s), i.e. (since it is
normalised)

P (s) =
sP̂ (s)∑∞

s′=1 s
′P̂ (s′)

. (9)

If needed, it might be useful to convince yourself of this relation (9) on a simple example (for instance
the case N = 7 with one component of size S = 3 and two of size S = 2). Hence, from (9), one obtains
P̂ (s) ∝ s−5/2 for large s.

(e) To estimate the scaling (with N � 1) of the size SN of the largest component at the critical
point c = 1, let us assume that the sizes of the different connected components are i.i.d. variables, their
common distribution being P̂ (s) – this is an approximation since the sizes of the different connected
components are actually correlated. In addition, we use the fact that there are O(N) connected
components. Hence, from the results of the first lecture on extreme value statistics, since P̂ (s) has
an algebraic tail with exponent τ = 5/2, one finds that SN ∼ N2/3, which coincides with the exact
result.
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