ICFP M2 - Statistical physics 2
 Solution of the homework $\mathrm{n}^{\circ} 4$
 Random Matrices

Grégory Schehr, Guilhem Semerjian
March 2020

The two eigenvalues of M are the solutions of its characteristic equation

$$
\begin{equation*}
\lambda^{2}-\left(M_{11}+M_{22}\right) \lambda+\left(M_{11} M_{22}-M_{12}^{2}\right)=0, \tag{1}
\end{equation*}
$$

which read

$$
\begin{equation*}
\frac{M_{11}+M_{22}}{2} \pm \frac{1}{2} \sqrt{\left(M_{11}+M_{22}\right)^{2}-4\left(M_{11} M_{22}-M_{12}^{2}\right)}, \tag{2}
\end{equation*}
$$

hence

$$
\begin{equation*}
\Delta=\sqrt{\left(M_{11}-M_{22}\right)^{2}+4 M_{12}^{2}} \tag{3}
\end{equation*}
$$

Denoting $X=M_{11}-M_{22}$ and $Y=2 M_{12}$, we realize that X and Y are two independent Gaussian random variables, both of variance 2 , and that $\Delta=\sqrt{X^{2}+Y^{2}}$ can be seen as the distance from the origin of a point drawn in the plane with this distribution. Hence the density of Δ is

$$
\begin{equation*}
\widehat{P}(\Delta)=\int_{\mathbb{R}^{2}} \mathrm{~d} x \mathrm{~d} y \frac{1}{4 \pi} e^{-\frac{x^{2}+y^{2}}{4}} \delta\left(\Delta-\sqrt{x^{2}+y^{2}}\right)=\frac{1}{2} \int_{0}^{\infty} \mathrm{d} r r e^{-\frac{r^{2}}{4}} \delta(\Delta-r)=\frac{1}{2} \Delta e^{-\frac{\Delta^{2}}{4}}, \tag{4}
\end{equation*}
$$

after a change of variable towards polar coordinates. The average value of Δ is thus

$$
\begin{equation*}
\mathbb{E}[\Delta]=\int_{0}^{\infty} \mathrm{d} \Delta \frac{1}{2} \Delta e^{-\frac{\Delta^{2}}{4}} \Delta=\sqrt{\pi} . \tag{5}
\end{equation*}
$$

Changing variables from Δ to $s=\Delta / \mathbb{E}[\Delta]$ yields the probability density

$$
P(s)=\widehat{P}(\Delta=s \sqrt{\pi}) \sqrt{\pi}=\frac{\pi}{2} s e^{-\frac{\pi}{4} s^{2}} .
$$

