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We consider in this problem random N × N real symmetric matrices M , their eigenvalues being
denoted λ1, . . . , λN , and investigate the limiting behavior of their empirical eigenvalue distribution

µN = 1
N

N∑
i=1

δλi
when N diverges.

One says that M is drawn from the Gaussian Orthogonal Ensemble (GOE) when its matrix ele-
ments Mij above the diagonal (i ≤ j) are independent Gaussian random variables with zero mean and
variance E[M2

ij] =
1
N

for i < j and E[M2
ii] =

2
N

on the diagonal. The elements Mij below the diagonal
(i > j) are then obtained from the symmetry Mij = Mji.

One calls real Wigner matrix a generalization of the GOE, with the same assumptions of indepen-
dence, symmetry, values of the first and second moment of the Mij, but the matrix elements are not
assumed to be Gaussian anymore (their distribution can be arbitrary but should decay fast enough).

In the large N limit µN converges to the so-called Wigner semi-circle law, an absolutely continuous
probability measure supported on [−2, 2] with the density

ρsc(λ) =
1

2π

√
4− λ2 . (1)

This is true for all Wigner matrices, independently of the precise form of the distribution of the matrix
entries, another example of the universality phenomenon.

In the following we shall sketch two proofs of this result, one specific for the GOE ensemble and a
more general one.

1 Preamble on Gaussian variables

Consider an invertible N × N matrix A, assumed for simplicity to be definite positive. Using a
Gaussian integral derive the following identity,

(A−1)ii =
1

Aii −
N∑

j,k=1
j 6=i,k 6=i

Aij((A(i))−1)jkAki

, (2)

where A(i) denotes the matrix of size N − 1 obtained from A by removing the i-th row and column of
A. This is a special case of the so-called Schur’s complement lemma for the inverse of block matrices.

We recall that if X is a Gaussian random variable with zero mean and F a function,

E[XF (X)] = E
[
X2

]
E[F ′(X)] . (3)

This identity can be generalized to the case of a vector of nGaussian random variables, (X1, . . . ,Xn),
each one of zero mean, with a function F of n variables,

E[XiF (X1, . . . ,Xn)] =
n∑

j=1

E[XiXj ] E

[
∂F

∂Xj

(X1, . . . ,Xn)

]
. (4)
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2 The semi-circle law for GOE random matrices

In this part of the problem M is a N ×N matrix drawn from the GOE ensemble. We define the
resolvent matrix of M as G(z) = (M − z I)−1, where I is the N ×N identity matrix, and z a complex
number with Im z > 0, and denote gN (z) = 1

N
Tr G(z) its normalized trace.

1. Explain why

µN (λ) =
1

π
lim

η→0+
Im gN (λ+ i η) . (5)

2. Show that for an invertible matrix A one has

∂(A−1)ij
∂Akl

= −(A−1)ik(A
−1)lj . (6)

3. Using the Gaussian formula (4) compute the value of E [Gij(z)Mkl], distinguishing the cases
k = l and k 6= l.

4. Deduce from this result that

E [Tr (G(z)M)] = −
1

N
E
[
(TrG(z))2

]
−

1

N
E
[
Tr (G(z)2)

]
. (7)

5. Simplify this expression to obtain

E[gN (z)2] + z E[gN (z)] + 1 = −
1

N2
E
[
Tr (G(z)2)

]
. (8)

6. Argue that the right hand side of this equation is negligible in the large N limit. We shall
furthermore admit that in this limit the random variable gN (z) concentrates around its average,
whose limit will be denoted g(z). Write the equation satisfied by g(z), solve it, and conclude to
obtain the semi-circle law of Eq. (1).

3 The sketch of a proof by recursion for Wigner matrices

We consider now that M is a Wigner random matrix of a large size N .

1. Justify the following equation for the resolvent matrix :

G11(z) =
1

M11 − z −
N∑

j,k=2

M1jG̃jk(z)Mk1

, (9)

where G̃ is the resolvent for the (N − 1)× (N − 1) matrix M̃ obtained from M by removing its
first line and column.

2. Deduce from this result that

E

[
1

G11(z)

]
= −z −

1

N
E[Tr G̃(z)] . (10)

3. In the large N limit one can prove the concentration of G(z) around g(z)I, where g(z) is the
limit of E[gN (z)]. Admitting this result show that (10) implies the universality of the semi-circle
law for Wigner matrices.
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