ICFP M2 - Statistical PhYsics 2 - TD no 8
 Dyson Brownian Motion

Grégory Schehr, Guilhem Semerjian

March 2020

We recall that an $N \times N$ symmetric random matrix M is distributed according to the Gaussian Orthogonal Ensemble if its matrix elements $M_{i j}$ are, for $i \leq j$, independent Gaussian random variables with zero mean and variances $\mathbb{E}\left[M_{i i}^{2}\right]=\frac{2}{N}, \mathbb{E}\left[M_{i j}^{2}\right]=\frac{1}{N}$ if $i<j$. We shall denote $M \stackrel{\text { d }}{=}$ GOE in this case.

The goal of this problem is to prove that if M is a GOE random matrix, the joint density of its eigenvalues is

$$
\begin{equation*}
P\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\frac{1}{Z} \exp \left(-N \sum_{\alpha=1}^{N} \frac{\lambda_{\alpha}^{2}}{4}\right) \prod_{1 \leq \alpha<\beta \leq N}\left|\lambda_{\alpha}-\lambda_{\beta}\right|, \tag{1}
\end{equation*}
$$

where Z is a normalization constant.
In order to obtain this result we shall study a stochastic process $M(t)$ in the space of matrices, and the process (known as the Dyson Brownian Motion) it induces on the eigenvalues $\left(\lambda_{1}(t), \ldots, \lambda_{N}(t)\right)$ of the time-dependent random matrix $M(t)$. More precisely, $M(t)$ will be the solution of the Langevin equation

$$
\begin{equation*}
\frac{\mathrm{d} M}{\mathrm{~d} t}=-M(t)+\eta(t), \tag{2}
\end{equation*}
$$

where $\eta(t)$ is a symmetric matrix whose matrix elements are given by independent Gaussian white noises of zero mean and variances

$$
\begin{equation*}
\mathbb{E}\left[\eta_{i i}(t) \eta_{i i}\left(t^{\prime}\right)\right]=\frac{4}{N} \delta\left(t-t^{\prime}\right), \quad \mathbb{E}\left[\eta_{i j}(t) \eta_{i j}\left(t^{\prime}\right)\right]=\frac{2}{N} \delta\left(t-t^{\prime}\right) \quad \text { for } \quad i<j . \tag{3}
\end{equation*}
$$

The initial condition $M(t)=M_{0}$ is deterministic.

1. Describe the distribution of $M(t)$ at a given time t; conclude that in the large-time limit, $M(t) \xrightarrow{\mathrm{d}} \mathrm{GOE}$.
2. Consider two times t and $t+s$ with $s>0$; show that the matrices at these two times are related by

$$
\begin{equation*}
M(t+s)=M(t) e^{-s}+\Delta \tag{4}
\end{equation*}
$$

where Δ is a random matrix, independent of $M(t)$, whose distribution you shall specify.
3. We denote $\left|v_{1}\right\rangle, \ldots,\left|v_{N}\right\rangle$ the orthonormal basis of eigenvectors of $M(t)$ associated to the eigenvalues $\left(\lambda_{1}(t), \ldots, \lambda_{N}(t)\right)$, and define $\widehat{\Delta}$ the $N \times N$ matrix with elements

$$
\begin{equation*}
\widehat{\Delta}_{\alpha \beta}=\left\langle v_{\alpha}\right| \Delta\left|v_{\beta}\right\rangle . \tag{5}
\end{equation*}
$$

Explain why $\widehat{\Delta}$ is proportional to a GOE distributed random matrix independent of $M(t)$, and give the proportionality constant. Hint : recall what does "O" stand for in "GOE".
4. We now take $s=\mathrm{d} t$, an infinitesimal time-increment. Use second order perturbation theory to show that the variation of an eigenvalue $\lambda_{\alpha}(t) \rightarrow \lambda_{\alpha}(t+\mathrm{d} t)$ of the matrix $M(t)$ is given by

$$
\begin{equation*}
\lambda_{\alpha}(t+\mathrm{d} t)=\lambda_{\alpha}(t)-\lambda_{\alpha}(t) \mathrm{d} t+\widehat{\Delta}_{\alpha, \alpha}+\sum_{\beta \neq \alpha} \frac{\left(\widehat{\Delta}_{\alpha, \beta}\right)^{2}}{\lambda_{\alpha}(t)-\lambda_{\beta}(t)}+o(\mathrm{~d} t) \tag{6}
\end{equation*}
$$

5. Discuss the scalings of the average and the variance (with respect to the randomness in the process in the infinitesimal time interval $[t, t+\mathrm{d} t])$ of the terms in the right hand side, and conclude that the eigenvalues $\left(\lambda_{1}(t), \ldots, \lambda_{N}(t)\right)$ of $M(t)$ obey a set of coupled Langevin equations,

$$
\begin{equation*}
\frac{\mathrm{d} \lambda_{\alpha}(t)}{\mathrm{d} t}=-\lambda_{\alpha}(t)+\frac{2}{N} \sum_{\beta \neq \alpha} \frac{1}{\lambda_{\alpha}(t)-\lambda_{\beta}(t)}+\xi_{\alpha}(t) \tag{7}
\end{equation*}
$$

where the ξ_{α} are independent Gaussian white noises of zero average and variance :

$$
\begin{equation*}
\mathbb{E}\left[\xi_{\alpha}(t) \xi_{\beta}\left(t^{\prime}\right)\right]=\frac{4}{N} \delta_{\alpha, \beta} \delta\left(t-t^{\prime}\right) . \tag{8}
\end{equation*}
$$

This stochastic process for the eigenvalues is called the Dyson Brownian Motion, an example of its trajectories is shown in the figure below for $N=5$:

6. Compute the potential energy $E\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ from which derives the deterministic force in (7). What is the temperature in the usual interpretation of the Langevin equations? Write down the associated Gibbs-Boltzmann distribution, and conclude the proof of (1).

