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1. The matrix M satisfies

dM

dt
= −M(t) + η(t) (1)

starting from M(0) = M0. This equation (1) implies a set of ordinary differential equations for the
matrix element Mij(t) with i ≤ j, i.e., dMij(t)/dt = −Mij(t)+ ηij(t) whose solutions can be obtained
by “varying the constant”. The solution of (1) can be written in a matrix form as

M(t) = M0 e
−t +X(t) , X(t) =

∫ t

0
e−(t−t′)η(t′)dt′ . (2)

Since ηij(t
′) is a Gaussian random variable, each matrix element Xij(t) in (2) is also a Gaussian

random variable, being a linear combination of Gaussians. It has zero mean, E[Xij(t)] = 0 and the
variance is given by

E[X2
ij(t)] =

∫ t

0
dt1

∫ t

0
dt2 e

−(2t−t1−t2)E [ηij(t1)ηij(t2)] (3)

= (1− e−2t)×



















2

N
, i = j

1

N
, i < j .

(4)

Besides, it is clear that E[Xij(t)Xkl(t)] = 0 if i 6= k or j 6= l. And, therefore, from the definition of a
GOE matrix one has

X(t)
d
=
√

(1− e−2t) GOE , (5)

where
d
= means an equality in distribution. Hence

M(t)
d
= M0 e

−t +
√

(1− e−2t) GOE
d→ GOE (6)

when t → ∞, as the initial condition disappears and the prefactor in front of the GOE matrix tends
to 1.

2. Here, we can repeat the same calculation as in the previous question but in the interval [t, t + s]
instead of the interval [0, t]. This yields straightforwardly

M(t+ s) = M(t)e−s +∆ , ∆ =

∫ t+s

t

η(t′)dt′ . (7)

Performing the same computation as before leading to (5), one obtains here

∆
d
=
√

(1− e−2s) GOE . (8)

1



Besides, in Eq. (7) we see that M(t) depends on the noise variables η(t′) only for t′ ∈ [0, t] while ∆
depends on the noise variables η(t′) only for t′ ∈ [t, t+ s]. Since the noise variables are not correlated
in time this means that ∆ and M(t) are independent matrices.

3. We denote by R the orthogonal matrix encoding the change of basis from the canonical basis
to the orthogonal basis of eigenvectors of M(t), |v1〉, |v2〉, . . . , |vN 〉. The relation between ∆̂ and ∆
thus simply reads ∆̂ = R∆R−1 where R and ∆ are independent (since we have shown that ∆ is
independent of M(t)). Recalling that the law of GOE is invariant under the orthogonal group, which
means in particular that ∆̂ and ∆ have the same statistical properties, one deduces that ∆̂ and ∆ are
identical in distribution, i.e.,

∆̂
d
=
√

(1− e−2s) GOE , (9)

and both are independent of M(t).

4. We now use the relation in (7) with s = dt ≪ 1 and write

M(t+ dt) = M(t) e−dt +∆ , ∆
d
=
√

(1− e−2dt) GOE (10)

M(t+ dt) = M(t) + ǫ+ o(dt) , ǫ = ∆− dtM(t) , (11)

where ǫ is a “small” matrix that we will treat in perturbation theory. Using standard perturbation
theory (e.g. used in quantum mechanics) up to second order in ǫ, one finds

λα(t+ dt) = λα(t) + 〈vα|ǫ|vα〉+
∑

β 6=α

|〈vα|ǫ|vβ〉|2
λα(t)− λβ(t)

+ o(ǫ2) . (12)

Let us know evaluate the different matrix elements entering this formula (12). Let us start with the
diagonal elements

〈vα|ǫ|vα〉 = −dt〈vα|M(t)|vα〉+ 〈vα|∆|vα〉 (13)

= −dtλα(t) + ∆̂αα , (14)

since |vα〉 is an eigenvector of M(t) with eigenvalue λα and where we have used the definition of the
matrix ∆̂. Similarly, the off-diagonal elements read

〈vα|ǫ|vβ〉 = ∆̂αβ , α 6= β . (15)

Hence, we get finally

λα(t+ dt) = λα(t)− dtλα(t) + ∆̂αα +
∑

β 6=α

∆̂2
αβ

λα(t)− λβ(t)
+ o(dt) . (16)

Note that the left over terms in (16) are indeed of order o(dt) since ǫ = O(
√
dt) such that o(ǫ2) = o(dt)

in Eq. (12).
5. From Eq. (9), with the substitution s = dt, one has that ∆̂αα is a Gaussian random variable of
zero mean and variance

E[∆̂2
αα] =

4

N
dt , α = 1, · · · , N , (17)

while the off-diagonal terms are Gaussian random variables of zero mean and variance

E[∆̂2
αβ] =

2

N
dt , α 6= β . (18)

In fact it is useful to write this off-diagonal term in Eq. (9) as

∆̂2
αβ

d
=

2dt

N
X2 , (19)
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where X is a Gaussian random variable with zero mean, i.e. E[X] = 0, and unit variance, i.e.
E[X2] = 1. It is convenient to think about the right hand side of Eq. (16) as the sum of a deterministic
contribution (given the λα(t)) plus a noise part, which has zero mean, and rewrite this Eq. (16) as
follows

λα(t+ dt)− λα(t) = −dtλα(t) +
∑

β 6=α

E[∆̂2
αβ]

λα(t)− λβ(t)
+ ∆̂αα +

∑

β 6=α

∆̂2
αβ − E[∆̂2

αβ]

λα(t)− λβ(t)
+ o(dt) . (20)

The blue part is the deterministic contribution and all the terms there are actually of the same order
O(dt) – see Eq. (19). The red part is the noise (of zero mean): there the term ∆̂αα is of order O(

√
dt)

[see Eq. (17)] while the other ones (the sum over β 6= α) are actually of order O(dt) [see Eq. (19)]
and thus sub-leading compared to ∆̂αα. They can be discarded such that, to leading order, one has

λα(t+ dt)− λα(t) = −dtλα(t) +
2

N

∑

β 6=α

dt

λα(t)− λβ(t)
+ ∆̂αα (21)

which indeed, in the limit dt → 0, corresponds to the Langevin equation

dλα(t)

dt
= −λα(t) +

2

N

∑

β 6=α

1

λα(t)− λβ(t)
+ ξα(t) (22)

where ξα are independent Gaussian white noises of zero mean and variance:

E
[

ξα(t)ξβ(t
′)
]

=
4

N
δα,βδ(t− t′) . (23)

Indeed, by integrating the Langevin equation (22) over the infinitesimal interval [t, t+ dt] one finds

λα(t+ dt)− λα(t) = −dtλα(t) +
2

N

∑

β 6=α

dt

λα(t)− λβ(t)
+

∫ t+dt

t

ξα(t
′)dt′ . (24)

We need to show that the noise in the right hand side of (24) has the same characteristics as ∆̂αα in
Eq. (21). First, the noise term in (24) is a Gaussian random variable of zero mean, since it is the sum
of zero mean Gaussian random variables. Let us compute the covariance matrix. From the relation
(23) one can easily check that

E

[
∫ t+dt

t

ξα(t1)dt1

∫ t+dt

t

ξβ(t2)dt2

]

=
4

N
δα,βdt (25)

which coincides with E[∆̂αα∆̂ββ] = (4/N)δα,β which follows from the previous result in Eq. (17)

together with the fact that the matrix ∆̂ is a GOE matrix – and hence its elements are independent
Gaussian random variables. We also note that the noise variables ∆̂αα in Eq. (21) are independent of
the eigenvalues λα(t) since ∆̂ is independent of the matrix M(t).

6. The potential energy E(λ1, · · · , λN ) and the temperature T are such that the Langevin equation
in (22) reads

dλα(t)

dt
= − ∂

∂λα

E(λ1, · · · , λN ) + ξα(t) (26)

where

E[ξα(t)ξβ(t
′)] = 2T δα,β δ(t− t′) . (27)

Therefore, by identification with the right hand side of (22) together with (23) one finds

E(λ1, · · · , λN ) =
1

2

N
∑

α=1

λ2
α − 2

N

∑

1≤α<β≤N

ln(|λα − λβ|) (28)

3



and T = 2/N . Finally, in the limit t → ∞, the law of the eigenvalues converges to the Gibbs-Boltzmann
distribution which is given by

PGB(λ1, · · · , λN ) =
1

Z
exp

(

− 1

T
E(λ1, . . . , λN )

)

=
1

Z
exp

(

−N

N
∑

α=1

λ2
α

4

)

∏

1≤α<β≤N

|λα − λβ| . (29)
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