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A recurrent pattern in this course has been to ask the question: “what happens if one adds (strong)
disorder to something ? ” Following this pattern we shall consider in this lecture the effects of disorder
on the transport of some quantities, or the propagation of some waves. This is a vast subject, which
was the sole topic of the series of M2 lectures by N. Cherroret and C. Texier, this lecture will not
attempt to cover it in full details, but rather to introduce the aspects of this field that are most
connected to the rest of the course.

1 Phenomenology of transport in disordered media

Let us start by reviewing some basic aspects of transport, focusing first on condensed matter systems.

1.1 Conductivity

Consider a piece of material submitted to some voltage, as depicted in the figure:

The voltage and the intensity of the current are linked by Ohm’s law, U = RI, with in this
geometry R = 1

σ
L
S , with L the length of the sample, S its area, and σ the conductivity of the material.

At the microscopic level σ links the charge current density and the electrical field according to ~j = σ ~E.
Note that the computation of σ from first principles, starting from a microscopic model of the ma-

terial, is an extremely difficult task, because it involves a very large number of particles in interaction,
that should be treated in a quantum mechanical way, and most importantly because it is an intrisically
out-of-equilibrium phenomenon. Indeed the flow of a current in a system cannot be explained by the
laws of equilibrium statistical mechanics, and out-of-equilibrium physics lacks the general principles
(canonical ensembles in particular) of its equilibrium counterpart.

In the phenomenological Drude modelling of this problem one introduces a “friction” force that
compensates the effect of the electric field on the charge carriers (electrons for instance) to reach a

steady state, and expresses the conductivity as σ = ne2τ
m , with n, e and m the density, charge and mass

of the carriers. The parameter τ is a characteristic time scale of the “friction” exerted on the moving
charges, that comes from the “collisions” (more precisely scattering events) between the charges and
the imperfections of the crystal lattice (remember that by Bloch’s theorem a perfectly periodic lattice
admits propagating waves). These imperfections come either from the thermal vibrations of the lattice
(phonons) or from the defects of the lattice (dislocations, replacement of an atom by an impurity).

When the concentration of impurities in a material increases, it is intuitively clear that the con-
ductivity σ should decrease, the “collisions” of the charge carrier against these impurities being more
frequent. This however leaves open two possibilities, represented schematically on the figure:
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• either σ decreases smoothly when the disorder is increased, the material remains always metallic
(conductor) even if more and more poorly (left panel)

• or there is a phase transition towards an insulating phase when the disorder exceeds some critical
value (right panel)

Which of these two scenarii is realized is a rather fundamental question which was first raised by
Anderson in a seminal paper in 1958, this field is now mainly known under the name of Anderson
localization.

1.2 Diffusion

In the previous paragraph we considered the response of a system submitted to a non-zero electric field
~E, and characterized it through the conductivity σ, the proportionnality factor between the excitation
~E and the response ~j.

Consider now the somehow dual question: what happens to a particle, in the absence of any field
~E ? Without loss of generality we assume that the particle is in ~r = ~0 at t = 0. Quite generically we
expect the particle to have a diffusive behavior at large times, its average mean square displacement
behaving as 〈~r(t)2〉 ∼ 2Dt as t→∞, which defines the diffusion constant D.

It is important to keep in mind that σ and D are not independent. The two a priori different
situations they describe (response to a field vs spontaneous fluctuations without field) are indeed tied
together by the Fluctuation Dissipation Theorem (FDT, associated to Einstein and Kubo), which is
a fundamental property of statistical mechanics and exist under different forms in various contexts.
Here one can quote it as D = kT

ne2
σ.

In particular in an insulator, defined by σ = 0, one has necessarily D = 0, particles do not diffuse
at large times, they thus remain “localized” around their initial position, hence a partial justification
of the name of this topic. On the contrary, in a conductor, both σ and D are strictly positive, particles
can diffuse away from their initial position in the absence of an external drive.

1.3 Dimension matters

Before describing in more details the models that can be investigated to answer Anderson’s question,
we can already anticipate that the dimensionality will play a crucial role. One can think of the metallic
phase as an ordered state that will be perturbed by the addition of disorder. But as usual fluctuations
(thermal or due to disorder) destroy ordered phase more efficiently in lower dimensions (recall that
the pure Ising model in d = 1 has no ordered phase at any positive temperature, whereas for d ≥ 2 it
has a low temperature magnetized phase). This is also the case for the localization phenomenon:

• for d = 1 and d = 2 an infinitesimal amount of disorder is enough to induce localization (absence
of conductivity),

• for d ≥ 3 there is a phase transition between metallic and insulating phases as a function of the
disorder strength.

Note that considering dimensions lower than 3 is not an academic question, as effectively 2d
(graphene) and 1d (carbone nanotubes) condensed matter systems do exist.
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1.4 Other systems

The presentation above has been focused on electrons in condensed matter systems, but actually
Anderson localization occurs and has been studied both theoretically and experimentally in many
other contexts, in particular for the propagation of classical waves (light and sound) in disordered
media, and for cold atoms in disordered potentials (created by a speckle phenomenon).

2 Microscopic models

Let us now turn to a more precise description of simple models that arise naturally in this context.

2.1 In the continuum

Maybe the most natural approach consists in studying the Schrödinger equation for a particle of mass
m in a disordered potential V (~r),

i~
∂

∂t
ψ(~r, t) =

(
− ~2

2m
∆ + V (~r)

)
ψ(~r, t) (1)

where the wave function ψ is a square-normalizable function (ψ ∈ L2(Rd)). Various models of the
disordered potential can be used, for instance one can assume that point-like scatterers are placed
randomly in space, yielding

V (~r) =
∑
n

an δ(~r − ~xn) , (2)

with an and ~rn the amplitude and the location of the n-th scatterer, both can be taken random, the ~rn
can be for instance drawn as a Poisson Point Process (there is a scatterer in any infinitesimal volume
d~x with probability proportional to vol(d~x), independently for each infinitesimal volume).

In this context the question of the existence of transport can be reformulated as follows : imagine
sending a wave packet onto such a disordered potential. There will be multiple scattering, with many
different paths between the various scattering centers. The question is whether these multiple paths
will lead to constructive interference, in which case the wavepacket will be transported through the
medium, or whether the interferences will be destructive. If the potential is periodic Bloch’s theorem
asserts that the interferences are constructive, but in the disordered case the answer is not obvious
and can depend on the strength of the disorder.

2.2 On a lattice: the Anderson model

As usual it is technically simpler to work in a discrete setting than in a continuous one. We shall thus
modify the previous model and assume that the particle can only be at some discrete positions (as
in the tight-binding approximation of condensed matter physics), modelled as a graph Λ, for instance
Zd or a finite portion of it. The wavefunction ψ is defined by its values ψi at all vertices of the graph,
ψ ∈ `2(Λ) and we introduce an operator H that acts on ψ according to:

(Hψ)i = J
∑
j∈∂i

ψj + Viψi , (3)

where ∂i denotes the set of nearest neighbors of i along the edges of the graph, and Vi is a random
potential on site i. The first term is proportional to a discrete version of the Laplacian (one should
substract 2dψi to have exactly the discrete Laplacian, but this would only lead to a global shift of
the energy scale). The constant J is an energy scale that sets the strength of the hopping between
neighboring sites (kinetic energy). This Hamiltonian is thus a discrete version of (1), and is known as
the Anderson model. Usually the random variables Vi, that represents a pinning energy that attracts
or repel the particle on site i, are taken as independent identically distributed. A standard choice
for their law is to take them uniformly distributed on the interval [−W/2,W/2], the parameter W
controlling in this way the strength of the disorder.
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When Λ is finite, for instance a portion of linear size L of the lattice Zd, one can view H as a
square matrix of size N = Ld, acting on vectors ψ of size N by the usual multiplication rule. An
equivalent definition of H is then given via its matrix elements,

Hij =


J if i and j are nearest neighbors

Vi if i = j

0 otherwise

(4)

As the diagonal elements Vi are random variable H is a random matrix, as the ones studied in the
previous lecture. It is however important to underline two crucial differences with the random matrix
ensembles introduced previously (i.e. GOE, GUE, invariant ensembles, Wigner matrices):

• the non-zero off-diagonal elements of H have a finite-dimensional Euclidean structure, whereas
the usual random matrices do not (they are mean-field like)

• the Anderson model has two energy scales, J and W , whereas usual random matrices have only
one (that can be absorbed in a global multiplicative coefficient); this second remark will play an
important role later on.

As anticipated the Anderson model can exhibit phase transitions; these can only occur in the
thermodynamic limit. In this context there are two ways of reaching it: either one starts with a finite
size L, deal with H as a matrix, and then send L to ∞, or one works directly with an infinite lattice
as Zd, considering H as a linear operator on the infinite-dimensional vector space `2(Zd). The second
approach is mathematically more demanding but sometimes necessary to obtain precise results.

Let us also mention that the Anderson model can be defined on any graph, it has been in particular
studied also in random graphs of the type introduced previously in this course, and on the related
infinite trees. These constructions are often called Bethe lattices in this context, and provide a mean-
field version of the model.

In the following we will only consider the lattice Anderson model, and put ~ = 1 for simplicity.

2.3 Observables

Imagine you are given an instance of the Anderson model, i.e. a graph Λ and the energies Vi on
the vertices, and asked to determine whether it represents a metal or an insulator; what should you
compute ? This is what we are going to see now. For simplicity we do not want to put a current in
the system, we shall thus take the “diffusion” point of view on this question. We will also assume that
the graph is finite, with N vertices.

• The state of the system is represented by the wavefunction |ψ(t)〉, here a vector of size N , that
evolves according to Schrödinger’s equation i d

dt |ψ(t)〉 = H|ψ(t)〉; this equation being linear all
the relevant information on H is given by its eigendecomposition. As H is Hermitian we have
a basis of eigenvectors |vα〉, for α = 1, . . . , N , such that H|vα〉 = ωα|vα〉, with ωα the real
associated eigenvalues. We assume the eigenvectors to be orthonormal, 〈vα|vβ〉 = δα,β. We will
also denote {|i〉} the canonical basis, i.e. |i〉 is the normalized vector for a particle present only
on the vertex i of the graph.

• Let us compute in particular pi→j(t) defined as the probability that a particle which starts at
t = 0 on vertex i is present on vertex j at a later time t:

pi→j(t) =
∣∣〈j|e−iHt|i〉∣∣2 (5)

=

∣∣∣∣∣
N∑
α=1

〈j|vα〉〈vα|i〉e−iωαt
∣∣∣∣∣
2

(6)

=

N∑
α=1

|〈j|vα〉|2 |〈vα|i〉|2 +
∑
α 6=β

ei(ωβ−ωα)t〈j|vα〉〈vα|i〉〈i|vβ〉〈vβ|j〉 (7)
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We will denote p̃i→j the first term in the last line, and think of it as the large time limit of
pi→j(t). This is slightly abusing, as the second term is, for all finite systems, a periodic function
of t. Nevertheless we have in mind the large N limit, in the presence of disorder, in which case
the oscillations of the second term become very strong and it is reasonable to assume that they
average out to zero. Let us make two remarks on the expression of p̃:

– in order to have p̃i→j > 0 one needs the existence of some eigenvector |vα〉 of H which
overlap both with i and j, i.e. such that 〈i|vα〉 and 〈j|vα〉 are different from zero. In other
words the diffusion at long times between distant sites i and j is only possible if some
eigenvectors connect them, i.e. are “delocalized” in a sense that will be made more precise
later on.

– reciprocally for j = i the probability that the particle remains at its starting point is
p̃i→i =

∑N
α=1 |〈i|vα〉|4.

• Let us introduce some quantities which are commonly used to summarize in a compact way the
relevant information about the eigendecomposition of H:

– The Density Of States (DOS) is defined as

ρ(E) =
1

N

N∑
α=1

δ(E − ωα) . (8)

It is the empirical distribution of the eigenvalues, it washes out all information about the
eigenvectors, but tells what are the possible energy levels of the system.

– The Local Density Of States (DOS) is defined, for a site i of the system, as

ρi(E) =
N∑
α=1

|〈i|vα〉|2δ(E − ωα) . (9)

This contains now some information on the eigenvectors, and tells how much the states of
energy E overlap with site i. One can show that the spatial average of the LDOS is equal
to the DOS, 1

N

∑N
i=1 ρi(E) = ρ(E), because

∑
i |〈i|vα〉|2 = 〈vα|

∑
i |i〉〈i|vα〉 = 〈vα|vα〉 = 1.

– The Inverse Participation Ratio of the α-th eigenvector is defined as

IPRα =
N∑
i=1

|〈i|vα〉|4 . (10)

Recall that we have already encountered such a quantity in TD2, and explained its inter-
pretation as follows. Suppose that |vα〉 is non-zero, and constant, on a number Nα of sites.
Because of the normalization condition one has

〈i|vα〉 =

{
1√
Nα

on Nα sites i

0 on the other sites
, hence IPRα = Nα

1

N2
α

=
1

Nα
. (11)

In general the inverse of the IPR is the order of magnitude of the number of sites on which
the eigenvector has a sizable value, or that “participates” to the vector, which explains the
name of the quantity. In the thermodynamic limit N →∞ these IPR can have dramatically
different behaviors: if IPRα → 0 one says that the vector |vα〉 is delocalized, or extended,
because it overlaps with a diverging number of sites. On the contrary if the IPR remains
strictly positive the vector is said to be localized, as it has a sizable value only on a finite
number of sites. The previous computations should help to see that these (de)localization
properties of the eigenvectors translate directly into the diffusion or localization of the
particles evolving according to Schrödinger’s dynamics.
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2.4 Phase transition in the Anderson model

Let us recall the definition (3) of the Anderson model, that we rewrite with bra-ket notations as

H = J
∑
i,j p.v

(|i〉〈j|+ |j〉〈i|) +
∑
i

Vi|i〉〈i| , (12)

where the first sum runs over all pairs of neighboring vertices, and the Vi are i.i.d. random variables,
uniform on [−W/2,W/2]. For concreteness we assume the graph to be a portion of Zd, of linear size
L, containing N = Ld sites, with periodic boundary conditions.

The two terms in H have very different properties, it is instructive to study first the two limits
where only one of the two terms is present:

• If J = 0 the Hamiltonian is diagonal in the canonical (site) basis, the energies ωα are equal to
the local potentials Vi, all states are maximally localized, i.e. IPRα = 1 for all α. The density
of states ρ(E) converges in the thermodynamic limit to the distribution of the Vi’s, here the
uniform law on [−W/2,W/2]. On the contrary the LDOS is very singular, it contains only a
delta peak at the potential energy of the site, ρi(E) = δ(E − Vi). One has pi→j(t) = δi,j at all
times, as no eigenvector connect different sites.

• On the contrary when W = 0 there is only the hopping term, the Hamiltonian is a pure tight-
binding model which, thanks to the invariance by translation, can be diagonalized in the Fourier
basis. The eigenvectors can indeed be chosen as

〈i|vα〉 =
1√
N
ei
~kα·~ri , (13)

where ~ri is the real-space position of the site i, and ~kα is one of the vectors of the form
(2π
L n1, . . . ,

2π
L nd), where the n’s are integers, and the ~k can be restricted to the first Brillouin

zone [−π, π]d. The energy of such an eigenvector is then found to be

ω(~k) = J
d∑

µ=1

2 cos(kµ) . (14)

The density of states ρ(E) can be expressed, in the thermodynamic limit, as an integral over the
first Brillouin zone, with a change of variables between ~k and E given by this dispersion relation.
The precise form of ρ(E) is not important, what we need for the following is that its support is
the interval [−2dJ, 2dJ ], as is clear from the dispersion relation.

One can check from the plane wave form (13) that these eigenvectors are maximally delocalized,
IPRα = 1/N for all α, and that the LDOS and the DOS coincide, i.e. ρi(E) = ρ(E) for all sites
i. Finally p̃i→j = 1/N for all i and j, at long times a particle is completely delocalized on all
sites.

It should be clear now that the two terms of the Hamiltonian have eigenstates of opposite physical
characteristics. When both are present at the same time there will be a competition between them,
and possibly phase transitions separating phases where one dominates the other. As a matter of fact
the phase diagram of the Anderson model for d ≥ 3, which is the main message to remember from
this lecture, is represented on the following figure:
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Let us emphasize the main points to take from this phase diagram, where the vertical axis is W ,
the strength of the disorder, and the horizontal axis is E, the energy of the eigenstates:

• the density of states ρ(E) is non-zero on the interval [−2dJ −W/2, 2dJ + W/2]. Indeed when
W = 0 the band of plane waves covers the energies [−2dJ, 2dJ ], and the existence of arbitrary
large cubes where all the local potentials Vi are close to their maximal value W/2 (or minimal
values −W/2) implies that states exist for energies arbitrary close to the edges ±(2dJ +W/2).

• depending on the values of W and E in this authorized interval the nature of the corresponding
eigenstate changes drastically. Some correspond to delocalized eigenvectors, in the region denoted
“ext” (for extended) on the figure, while the eigenstates in the “loc” phase are localized. The
line separating these two phases is called the mobility edge, a phase transition occurs when it is
crossed. When W = 0 of course the band [−2dJ, 2dJ ] corresponds to delocalized states. When
W is increased but remains small compared to J there are both extended states in the middle
of the band, and localized states close to the energy edges. When W is further increased above
a critical value Wc all extended states disappear, only localized states survive.

• the transition between the localized and delocalized phases cannot be seen on the DOS ρ(E).
If one however zooms on the distribution of eigenvalues before taking the thermodynamic limit,
and look at the correlation between energy levels on the mean spacing scale, one sees a drastic
difference between the two phases. Indeed the delocalized regime exhibits level repulsion between
eigenvalues, exactly as in the usual random matrix case, while the localized eigenvalues do not
repel each other and exhibits Poisson statistics, as if they were independent. This is reasonable,
localized states have non-zero values on sites that are typically far apart in real space, hence
there is a negligible overlap between two distinct localized eigenvectors.

• As said above ρ(E) is non-zero up to the edges ±(2dJ +W/2) but it is very small close to them,
as schematized on this plot :

In fact the behavior close to the edge is called a Lifshitz tail,

ρ(2dJ +W/2− δ) ∼ A exp

[
− B

δd/2

]
as δ → 0 , (15)

where A and B are two positive constants. This is an essential singularity with all the derivatives
of ρ being equal to 0. Physically it comes from the fact that all sites in a large cube must have
a local energy Vi close to its maximal value W/2 to obtain an eigenvalue close to the edge, an
event which has a probability exponentially small in the volume of the cube.

3 Conclusions

This localization transition has been the subject of intense research efforts, both experimentally and
theoretically, in physics and in mathematics. It is still an active field in various directions, let us
mention two of them.

At the level of mathematical rigor it is now well-understood how to prove the existence of localized
regimes, at high energies or for large disorder. However the proof of the existence of delocalized
eigenvectors in the presence of disorder is restricted to some very special cases.

An important line of research is devoted, in physics and in mathematics, to the so-called Many-
Body Localization (MBL) problem. To explain its origin let us first emphasize that we studied in
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this lecture the localization of a single quantum particle, isolated from any environment: we used
the Schrödinger equation, at zero temperature. If there are many quantum particles, still in a closed
system, with no interactions between them, the situation does not change much: the many-body eigen-
states are just obtained by symmetrizing or anti-symmetrizing (depending on whether the particles
are bosons or fermions) the tensor products of single particle states.

But suppose now that such a disordered system is coupled to an heat bath at temperature T > 0.
Then no strict localization can survive: arbitrary localization barriers ∆E can be overcome, even with
a small probability e−∆E/T , and hence leads to delocalization (a mechanism known as “variable range
hopping”).

Consider finally a very large, isolated system. The basic hypotheses of statistical mechanics (er-
godicity, thermalization,. . . ) postulate that such a large system acts as an heat bath for its subsystems
(provided there are interactions in the system, and in absence of integrability), and hence should be
delocalized. The point is that there seems to exist non-integrable interacting systems that have local-
ized states, called MBL systems, hence violating the basic hypotheses of statistical mechanics. Their
understanding thus raises fundamental questions in this field.
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