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Direct observation of the full transition from
ballistic to diffusive Brownian motion in a liquid
Rongxin Huang1, Isaac Chavez1, Katja M. Taute1, Branimir Lukić2, Sylvia Jeney2, Mark G. Raizen1

and Ernst-Ludwig Florin1*
At timescales once deemed immeasurably small by Einstein, the random movement of Brownian particles in a liquid is expected
to be replaced by ballistic motion. So far, an experimental verification of this prediction has been out of reach due to a lack of
instrumentation fast and precise enough to capture this motion. Here we report the observation of the Brownian motion of
a single particle in an optical trap with 75 MHz bandwidth and sub-ångström spatial precision and the determination of the
particle’s velocity autocorrelation function. Our observation is the first measurement of ballistic Brownian motion of a particle
in a liquid. The data are in excellent agreement with theoretical predictions taking into account the inertia of the particle and
hydrodynamic memory effects.

Almost 200 years ago, the botanist Robert Brown was the first
to systematically investigate the erratic motion of suspended
microscopic particles1. Under Brown’s microscope, each

step seemed completely independent of the previous. It is this
randomness that is the hallmark of Brownianmotion. The origin of
the random motion was first successfully explained by Einstein as
the amplification of the statistical fluctuations of the surrounding
fluid molecules2. Since then, the theory of Brownian motion has
found broad application in the description of phenomena in
many fields in science3 and even in financial models4. A universal
description of the cumulative effect of many small, independent,
stochastic changes is the common thread that connects this wide
range of phenomena.

Due to the fractal nature of a diffusive Brownian particle’s
trajectory, the length of the path travelled in a given time
interval is unknown. Therefore, the particle’s velocity is ill-
defined, which led to confusion in early attempts to connect the
particle’s apparent velocity to the temperature as demanded by
the equipartition theorem5. Themean square displacement (MSD),
on the other hand, can be measured and was shown by Einstein
to increase linearly with time t : MSD(t ) = 2Dt , where D is the
particle’s diffusion constant.

Deviations from diffusion
Einstein was aware, however, that his stochastic description of
the interactions of the particle with the surrounding fluid must
break down at short timescales, where the particle’s inertia becomes
significant6. In the inertia-dominated regime, termed ballistic, the
particle’s motion is highly correlated and therefore allows for
the definition of a velocity. Loosely speaking, after receiving an
impulse from the surrounding fluid molecules, the particle flies
in a straight line with constant velocity before collisions with
fluid molecules slow it down and randomize its motion. The first
mathematical description of a Brownian particle’s dynamics that
included its inertia and was applicable over the entire time domain
was provided by Langevin7. The result is an exponentially damped
velocity autocorrelation function (VACF) with a characteristic
timescale τp =m/γ , where m is the mass of the spherical particle
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and γ is the Stokes viscous drag coefficient. Correspondingly, the
MSD approaches (kBT/m)t 2 in the ballistic regime below τp, and
becomes 2Dt at larger times. Here kB is the Boltzmann constant and
T is the temperature.

Hard-sphere simulations8–11 aswell as experiments12,13, however,
showed that, even for timescales much larger than τp, Einstein’s
description already fails. These deviations from random diffusive
behaviour were shown to originate from the inertia of the
surrounding fluid, which leads to long-lived vortices caused by
and in turn affecting the particle’s motion. These hydrodynamic
memory effects were first described by Vladimirsky14 and later
brought to wider attention by Hinch15. Instead of an exponential
decay, the VACF shows a long-time tail proportional to t−3/2.
Correspondingly, the hydrodynamic memory effects introduce an
intermediate regime between the purely ballistic t 2 and the diffusive
2Dt scaling, where the MSD takes on a rather complicated form15.
A characteristic timescale for the onset of this effect is given
by τf = r2ρf/η, where r is the particle’s radius and ρf refers to
the density of the fluid and η to its viscosity. The characteristic
timescales τf and τp are related by τf/τp = 9ρf/2ρp, where ρp is
the particle’s density, and hence are generally of the same order
of magnitude for the movement of a solid sphere in a liquid. In
addition, the correct hydrodynamic treatment modifies the MSD
in the ballistic regime to (kBT/m∗)t 2, wherem∗ is an effective mass
given by the sum of the mass of the particle and half the mass
of the displaced fluid.

Experimental challenges
In a 1907 paper16, Einstein declared that, due to the rapid
deceleration caused by the viscosity of the medium, it would
be impossible to measure the instantaneous velocity of an
ultramicroscopic Brownian particle moving in a liquid. In a gas
phase, however, the viscosity is more than 50 times lower and hence
the timescales of inertial movement are increased accordingly. For
microscopic particles in a rarified gas, Blum et al.17 were able to
observe the transition from diffusive to ballistic motion bymeans of
video microscopy, and more recently, Li et al.18 verified that their
instantaneous velocities follow the Maxwell distribution. In both
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Figure 1 | Schematic diagram of the experiment. A single micrometre-size
particle in water is undergoing Brownian motion in the observation volume
given by an optical trap. The light scattered by the particle interferes with
the unscattered laser light, giving rise to intensity shifts in the back-focal
plane of the condenser lens20,29,30. Two sets of fibres (here shown in yellow
and purple) guide the light to the two photodiodes of a fast, balanced
detector. The difference between the intensity signals from the two sets of
fibres (I1 and I2) is proportional to the particle’s position in the x direction.

cases, the solution to the Langevin equation19 was fully sufficient
to describe the experimental results. In contrast, Brownian motion
in a liquid is characterized not only by much faster timescales
but also by the added complexity of the rich interplay between
the particle and the medium. It is this interplay that enables
Brownian particles to act as probes of their environment, an
endeavour hitherto hampered by the lack of a validated theory for
the interpretation of results.

So far, experiments have only been able to access the non-
diffusive regime caused by hydrodynamic memory effects20,21
and have especially addressed hydrodynamic interactions between
neighbouring particles22–26. Ballistic Brownian motion of a particle
in a liquid, however, has been inaccessible to experiments and
hence hydrodynamic theories for this regime have never been
verified. Themain challenge in the direct observation of the ballistic
Brownian motion of a single particle lies in the coupling between
length scales and timescales. According to the Stokes–Einstein
formula, D = kBT/γ , a 1 µm silica bead in water, for instance,
will on average move about 1 nm within 1 µs. Purely ballistic
Brownian motion is expected on timescales significantly faster than
τp, which is about 100 ns for the above particle. The corresponding
average displacement is of the order of 1 Å. Therefore, resolving
ballistic Brownian motion in a liquid requires a position detector
with not only extraordinary spatial resolution but, simultaneously,
extraordinary temporal resolution. Although progress has been
made in achieving higher spatial resolution27, temporal resolution
is still lacking and, so far, no instrument has met both requirements
simultaneously. Here we exploit recent improvements in position
detector technology for optically trapped particles28 to for the first
time validate hydrodynamic theories for the ballistic regime of
Brownianmotion for a single particle in a liquid.

Detecting ballistic Brownianmotion
A schematic representation of our experimental set-up is shown
in Fig. 1. A single particle in water is confined by a harmonic
optical trap and undergoes Brownian motion inside the trapping
volume. Using laser interferometry20,29,30, its position–time trace in
one lateral dimension is recorded with a high-bandwidth detector
system28. The confinement by the trap’s harmonic potential
introduces another timescale τK = γ /K , where K is the stiffness of
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Figure 2 | Example MSD for silica particles 1µm and 2.5µm in diameter.
The position data were recorded at 100 MHz for 40 ms. The noise floor
given by the signal measured in the absence of a particle was subtracted
from the MSD. As standard deviations underestimate errors for finite time
series with correlations, we estimate the true statistical errors using the
‘blocking method’34. The red lines show the behaviour expected for ballistic
Brownian motion. Because τp scales with r2, the larger bead displays
ballistic motion at larger timescales.

the optical trapping potential. For timescales much shorter than τK ,
the motion can be considered free. In the experiments described
here, τK is typically two orders of magnitude larger than τf. This
system corresponds to that of a Brownian particle in a harmonic
potential as discussed in detail by Clercx and Schram31 in an
extension of Hinch’s work15.

To determine whether we have access to the ballistic motion
regime, we computeMSDs from the recorded position–time traces.
Figure 2 shows an example of an MSD for a 1 µm silica particle
calculated over five orders of magnitude in timescales from about
10 ns to 1ms. The MSD initially increases, and then reaches a
plateau around 0.1ms. The plateau is caused by the confinement
due to the optical trap. For shorter times the particle undergoes free,
but not necessarily random Brownian motion. As demonstrated
by the error bars, the limit of our temporal resolution is reached
by ∼10 ns in the case of a 1 µm silica particle. At this temporal
resolution, we can resolve a MSD as small as ∼0.0005 nm2,
corresponding to∼20 pm spatial resolution—smaller than the size
of a hydrogen atom. The temporal resolution varies for different
kinds of particle but is always smaller than τp in the experiments
presented here. The effect of the particle’s inertia on Brownian
motion is therefore expected to be visible, and indeed the data
for short timescales closely follow the (kBT/m∗)t 2 prediction
for ballistic motion.

Whereas both diffusive motion and hydrodynamic memory
effect depend only on the size of the particle, and not on
its composition, ballistic motion depends on the particle mass.
Deviations in behaviour between particles of the same size but
different densities hence clearly indicate the presence of particle
inertia effects. Figure 3a shows the normalized MSD for 2.5 µm
silica and polystyrene particles. The MSD has been normalized to
the behaviour expected for the diffusive regime, 2Dt , and the time
axis has been normalized to τf≈1.6 µs. The fact that the normalized
MSD of both particles deviates from unity implies that their motion
is not purely diffusive at the timescales shown. At times above∼2 τf
the two curves overlap, indicating that the motion in this temporal
regime is completely dominated by the fluid inertia. A difference
in the MSD values is discernible right around τf, and becomes
manifest at shorter timescales. The digression is a consequence
of the particles’ different densities and hence a clear indicator of
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Figure 3 | Ballistic regime. a, Normalized MSD for 2.5 µm silica (1.96 g ml−1) and polystyrene (1.05 g ml−1) particles. The timescale is normalized to τf, and
the MSD is normalized to the value in the free-diffusion regime 2Dt. Note that τf is the same for both particles. b, MSD of 1 and 2.5 µm silica particles
normalized to the value in the ballistic regime (kBT/m∗)t2. Arrows indicate the value of τp for each particle.

ballistic motion: silica has a higher density than polystyrene, and
so will move more slowly after receiving an impulse from the
surrounding water molecules. At the resolution limit of 0.07 τf,
the two curves differ by a factor of ∼2. As evidenced by both
the t 2 scaling of the MSD in Fig. 2 and the density-dependent
deviations for same-sized particles in Fig. 3a, our experiments
clearly resolve the regime of ballistic motion where the particle’s
motion is dominated by its own inertia.

Velocity autocorrelation function
To further investigate how closely the particles’ behaviour ap-
proaches the purely ballistic regime, we normalize the MSD to
(kBT/m∗)t 2 for two silica particles with different sizes. Figure 3b
shows that the normalizedMSDapproaches unity for both particles,
as expected for purely ballistic motion. The normalized value
reaches a maximum of 90% for the larger particle, indicating that
the particle maintains a constant velocity after receiving an impulse.
Thus, the particle’s path is now smooth rather than fractal and the
velocity can be determined directly from position measurements.
Therefore, for the first time, we are able to compute an experimental
VACF of a Brownian particle in a liquid.

Being a derivative, however, the velocities are subject to more
noise than positions and hence are more challenging to measure.
Particle size and material have to be carefully chosen to maximize
the position signal and temporal resolution. The particle’s mass
needs to be as large as possible to increase τp and secure best possible
access to the ballistic regime. At the same time, the strength of the
position signal depends on both size and particle composition. Due
to their well-defined shape and high refractive index (n = 1.68),
resin particles with a diameter of 2 µm provide a satisfying solution
to these requirements. To further reduce the noise, we compute the
VACF as an average of 100 separate time traces smoothed to the
expected temporal resolution.

Figure 4 shows our experimental results overlaid with a fit of the
theoretical expression from the Clercx-and-Schram theory. As the
stiffness of the optical trap can be determined by an independent
measurement based on position histograms, the only free parame-
ters in theVACF fit are the particle radius and a calibration factor for
the position detection. The remarkable agreement between theory
and data confirms not only that we are indeed measuring motion
in a regime with a well-defined velocity but also that we achieve
sufficient resolution and sampling to resolve the characteristic
features of the VACF. Even the tiny anti-correlation between 10 µs
and 300 µs, caused by reversal of direction at the other side of the
optical trap, is faithfully represented by our data.

It should however be noted that, although our spatial resolution
is sufficient to clearly resolve ballistic features of the MSD and even
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Figure 4 | Experimental VACF and theoretical description. The VACF
normalized to kBT/m∗ is shown for a 2 µm resin particle in an optical trap
with force constant 280 pN µm−1. The data are averages over 100
segments sampled at 50 MHz for 80 ms. Above 1 µs, the data were
averaged to 20 points per decade for fitting and display. The blue line
shows the Clercx-and-Schram theory fit to the whole experimental VACF.
The fit includes a calibration factor as the only fitting parameter. The grey
and green lines show the solution to the Langevin equation for the same
particle in the absence and presence of the harmonic trap, respectively.
These two lines are normalized to their limit kBT/m. Because they neglect
hydrodynamic memory effects, these curves sharply deviate from the data
at short timescales. For times shorter than τf= 1 µs, the velocity
correlations are weaker than expected from the Langevin equation due to
the inertia of the fluid, while at larger times the correlations are stronger
because the particle is carried along by the inertia of the fluid.

compute a VACF, both quantities are averages over large data sets.
Only with drastic further improvements in spatial resolution will it
be possible tomeasure position–time traces that are smooth enough
to allow for the determination of the instantaneous velocity of a
Brownian particle in a liquid. In principle, such a measurement
should return the Maxwell velocity distribution in accordance with
the equipartition theorem.

Particle–liquid interactions at short timescales
Care needs to be taken here to correctly account for the particle’s
fluid envelope, which increases its effective mass to m∗. The
equipartition theorem demands that m〈v2〉 = kBT , where v is the
particle’s velocity. The VACF expressions derived by Clercx and
Hinch, however, give a limit of 〈v2〉= kBT/m∗ for short times. This
apparent conflict was discussed by Vladimirsky and Terletzky14 as
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well as Giterman and Gertsenshtein32, who pointed out the effects
of the non-negligible compressibility of the fluid at short timescales.
The hydrodynamic treatment that increases the particle’s effective
mass to m∗ assumes the fluid to be incompressible. However, on
timescales of the order of τc = r/c , where c is the speed of sound
in the fluid, the particle interacts elastically with the surrounding
fluid—that is, the fluid is compressible. Only on timescales shorter
than τc will the particle be able to decouple from its fluid envelope,
and the velocity variance will approach 〈v2〉= kBT/m as demanded
by the equipartition theorem. The decrease in the VACF from
kBT/m to kBT/m∗ was shown by Zwanzig and Bixon33 to take the
form of exponentially damped oscillations.

An experimental verification of the oscillatory short-time decay
of the VACF is currently out of reach for a single particle in a liquid.
For a 1 µm silica bead in water, τc ≈ 0.3 ns and the corresponding
displacement is about 1 pm. Significant improvements in detector
technology are required to gain access to this regime. Nevertheless,
a valid single-particle theory from the diffusive to the ballistic
regime is of utmost importance for the correct description of
multiple-particle phenomena such as the viscoelastic properties
of colloidal suspension. In addition, the newly gained ability to
measure fast Brownian motion of an individual particle paves
the way for detailed studies of confined Brownian motion and
Brownianmotion in heterogeneous media.

Methods
Experimental set-up. Samples were prepared as dilute solutions in purified
water (Milli-Q, Millipore) with a typical number density of one particle per
200×200×200 µm3 volume to avoid hydrodynamic interactions between particles.
The particles used in the experiments are commercially available glass and
polystyrene beads (SS03N, SS05N and PS05N, Bangs Laboratories) and melamine
resin beads (90637, Sigma-Aldrich). Particles were trapped in the focus of a
1,064 nm laser with a power of 600mW. Experiments were carried out at 296±1K
after sufficient time for the set-up and sample to attain thermal equilibrium. The
distance between the trapped particle and the bottom coverslip was at least 10
times the particle’s diameter, ensuring that hydrodynamic interactions between the
particle and the bottom coverslip are negligible. High-speed position detection in
one lateral direction is possible with an array of fibres that guide the light to a fast,
balanced photodetector. The use of the fibre bundle as an intermediate unites the
optical requirement of large collection area with the small photodiodes required for
fast measurements. A detailed description of the detector can be found in ref. 28.
The detector output (75MHz bandwidth) is recorded with a high-bandwidth
digitizer at 100MHz and 14 bits for 40 ms. The length of the data segment is limited
by the size of the digitizer’s on-board memory.

For the VACF experiments, 100 position traces were recorded at 50MHz
for 40ms each and subsequently smoothed to a resolution of 5MHz to decrease
contributions from electronic noise. The VACF was computed as an average
over the 100 time traces.

Calibration and data fitting. To obtain the calibration for the position signal from
our detector, the MSD at times much shorter than τK is fitted to the expression
derived by Hinch15 for free Brownian motion including inertia effects due to
both the fluid and the particle. Input parameters for the fits are ρf = 1 gml−1 and
η= 10−3 Pa s as well as the densities 1.96 gml−1, 1.05 gml−1 and 1.5 gml−1 for
silica, polystyrene and resin particles, respectively. The only free parameters in
the fits are the particle radius and the multiplicative calibration factor. For the
VACF, the particle radius is obtained analogously. As the stiffness of the trap can
be determined independently from the width of the position distribution obtained
from a 10 s time series sampled at 50 kHz, this leaves the calibration factor as the
only free parameter for the fit of the full VACF.

Although it is in principle possible to fit the entire time domain using
complementary expressions for both MSD and VACF derived by Clercx31 that are
corrected for the presence of a harmonic potential, focusing on the time regime
independent of the trap yields more precise results because of the smaller number
of fit parameters involved.

Temporal and spatial resolution. The main sources of noise in our experiments
are laser and electronic noise. This noise is uncorrelated to the motion of the
particle and leads only to an offset in themeasuredMSD. The offset was determined
by measurements in the absence of a particle in the trap and was subtracted from
the MSDmeasured with a particle in the trap.

The nominal bandwidth of our detector is only 75MHz; however, we
obtain reasonable data even at a sampling frequency of 100MHz (Fig. 2). The
reason for this may lie in the fact that the nominal bandwidth is generally

specified for large signals while the signals we are looking at on fast timescales
are extremely small.
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	Figure 4 Experimental VACF and theoretical description. The VACF normalized to kB T/m* is shown for a 2 μ m resin particle in an optical trap with force constant 280 pN μ m-1. The data are averages over 100 segments sampled at 50 MHz for 80 ms. Above 1 μ s, the data were averaged to 20 points per decade for fitting and display. The blue line shows the Clercx-and-Schram theory fit to the whole experimental VACF. The fit includes a calibration factor as the only fitting parameter. The grey and green lines show the solution to the Langevin equation for the same particle in the absence and presence of the harmonic trap, respectively. These two lines are normalized to their limit kB T/m. Because they neglect hydrodynamic memory effects, these curves sharply deviate from the data at short timescales. For times shorter than τf =1 μ s , the velocity correlations are weaker than expected from the Langevin equation due to the inertia of the fluid, while at larger times the correlations are stronger because the particle is carried along by the inertia of the fluid.
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