ENS ICFP MASTER - First year - 2018/2019
Relativistic quantum mechanics and introduction to quantum field theory
Solution of the homework

1 Some operator identities

Note first that if O(t) is a t-dependent operator whose derivative 99 commutes with O(t), then

dt
%eo(t) = %eo(t) = eo(t)%, as can be proven by deriving term by term the series defining the

exponential.
a) With O(t) = tA, one has % = A that commutes with O(t), hence

% (etAXeftA) — % (etA) XeftA 4 etAX% (eftA) — etA(AX _ XA)eftA

= 4 [A, X]eftA
for any operator X. By induction on n one deduces that

ﬁ _ﬁ tA —tA\ _ tA —tA
dt”F(t)_dt” (e Be™) = e"[A,[A,...,[A,B]...]le

with n commutators. The identity (1) of the problem then follows from

[e.9]

F(1)=F(0)+Y_

n=1

14
n! d¢m

F(t)

)

t=0

the Taylor expansion of F'(¢) in 0 has indeed an infinite radius of convergence for bounded operators
A.

b) One computes the derivative of G(t) as suggested,

% _ % (e4e!B) = AetAetB 4 etABe!B = ActActB 1 (etABetA) ctAetB
AethetP (B +t[A, B]) ee!? |

where in the last step we used the identity (1), the series stopping at n = 1 because A commutes

with [4, B]. The differential equation thus obtained, 9 = (A + B + t[A, B])G(t), with G(0) = 1, can

be integrated in G(t) = exp [t(A + B)+ %[A, B]] thanks to the preliminary remark above and the
commutation of A+ B with [A, B]. The identity (2) then follows with ¢ = 1.

¢) Taking A = [ dgg(q)a’(q) and B = [ df(q)a(q), one has [, B] = [ ddidgg(di) f(d)[a" (di), ()] =
— [dgg(q)f(q); then (3) follows directly from (2).

2 Some Lorentz algebra

We shall use the identity (1) with A = —%wpUJ P7 and B = P". We compute the commutator
14, B] = —200po [ 7%, P¥] = —Zaopo (=) (1M PP = 1P P%) = it P” = P
where we used (3.50) from the lecture notes and the antisymmetry of w,,. We have thus
[A, PF] = wt, PP, hence [A,[A,...[A,PH]...]]= (w")“pPp

with n commutators on the left-hand-side and w™ being the n-th matrix power of w. The identity (5)
is then obtained by resumming the series in (1) to obtain ¥ = A.



3 Relations for products of v-matrices and their traces

The Clifford algebra {y*, 7"} = 2n*¥1 translates into (v°)2 = —1, ()2 = 1 for i = 1,2, 3, and the
anti-commutation of v* and ~¥ if u # v. The matrices with covariant indices are defined as usual by
vo =", v =~ fori=1,2,3.

W ==+ ()2 (PP + ()2 =4x1

Y X' =, ({7 — AHY) = 20M y, — vy = —2+", by using the previous result.

WY = ({1 = AHP) = 0Pt — P = 2900 4 2970 = 2{0P 00 = AP x
YWY VAT = 1YV {T AR = AT) = 207y — APy = 297 (v = {0, P)) = 29797y
try, Y = %tr (Yu v + Yovu) = Nutr 1 =41,

In the following proof we move 7, to the right by using the Clifford algebra :

VYo Yo = 2Nt VYo — T VYY) Yo
= 20wt VYo — 2Nuptt VYo + Y VYo
= 277,Lwtr Yo Vo — 2"7;Lptr YvYo + 277,uatl" YWY — VY Vo Vi

By the cyclicity of the trace the last term on the right is equal to the term on the left hand side, hence

Y VYo = %(27%1/‘51" YoYo — 2Nuptt VYo + 21pete 'YV'Yp) = 4(77uu77p0 — NupMvo + 77;w771/p)

142~3 is a matrix that anticommutes with the four 4*’s, and that square to

We recall that 5 = —iy%y
one. Thus

BT Y5 Yy - - Vignar V5
tr Ypa - Vpontr — tr Y5 Y5 Ypr -+ - Vpons1 = M1 H2n+1 ’
—tr Y5 V1 -+ - Ypani1 V6

where in the first line we used the cyclicity of the trace, and in the second line the fact that s
anticommutes with the product of an odd number of v#’s. This implies that trv,, ... vu,,,, = 0.

4 Energy levels of a relativistic charged spin-0 particle in a constant
magnetic field

a) With A = A, (x,y, 2)€. the associated magnetic field is B =V A A = (0yA,)ey — (0,A,)ey, we can
thus take A, = —Bux to have B = Beé),. The Klein-Gordon equation in presence of an electromagnetic

potential is
[—(8/L —igA,) (0" —igA*) + m2] »=0.

With the above choice for A one obtains

0? 2 2p2,.2 ; 9 ) =
[WA+m +q°Bx QZqBiﬁaJ o(t,7) =0,

with A the spatial Laplacian.

b) We shall look for a stationary solution of the form ¢(t, %) = e "ty (&), where ¢(Z) obeys

0
{—EQ — A4+ m?+¢*B%2? — 21'qu8} () =0.
z
Denoting the momentum operator P = —iV this can be rewritten as an eigenvalue problem,

[P2 + P2+ (P, + qBX)] ¢ = (B* = m)p.

As the operator in the left hand side commutes with P, and P, we can look for a common eigenvector,
ie. take o(z,vy, 2) = eFvytik=2y (z), with

k. \?
P2 + (¢B)? <X+> X =(E*—=m’—k)x .

qB




Dividing by 2m we obtain

P2 1 (¢qB\? k. \?
Bl iz X 4+ 2
2m + 2" < m + qB
One recognizes a Schrodinger equation for an harmonic oscillator of mass m and frequency w = ¢B/m,

the location of the center xg = —k,/(¢B) of the harmonic well being fixed by k,. The eigenvalues of
this problem are w(n + (1/2)), with n =0, 1,..., hence

E2_m2_k2
_ Y
X_—2m X -

B(nky) = \Jm? + K2 +qBEn+ 1), (@) = etk P blaB 5 (JoB(o + (k/qB)) |

with H,, the Hermite polynomials. For each value of n and k, there is an infinite degeneracy due to
the free choice of k..

c¢) Expanding in the large m limit the above expression yields

k2 B 1 1 1\)?

y q 2
— 4 — +=]| - k; 4+ 2¢B + = + ...
2m  m <n 2) 8m3 ( v <n 2>>

The first term is the rest mass energy, the square bracket is the non-relativistic result that would have
been obtained with the Schrodinger equation, the last term is the first relativistic correction.

E(n,k,) =m+

d) The magnetic field is invariant under the transformation A A4V f, for an arbitrary function
f(&). The Klein-Gordon equation is invariant if one performs simultaneously the gauge transformation
¢ — ¢l hence a different choice of vector potential would only add a (space-dependent) phase to
the wavefunctions, but does not change the energies of the Landau levels.

5 Weakly relativistic limit of the Dirac equation and spin-orbit cou-
pling

a) In the Dirac representation

Id 0 ; 0 oj
== ) e 9)

The Dirac equation in presence of an electrostatic potential V' (Z) reads

<70 <§t HW(:E)) +7-V +m> e(t,7) =0

For a wave-function of the form proposed in the text, and using the Dirac representation of the gamma
matrices, one obtains the following coupled equations for ¢ and y :

b) With the second equation one gets x in terms of ¢ as

1
2m + e — ¢V (Z)

x() = (=g - V)p(@) -

Reinserting in the first equation yields

ep(Z) = |qV(Z) + (—id - V)




i.e. the form of the text with

c¢) Expanding at large m one has

L1 1 1 e—qV(D) e
9() = 2mq 4 Lgv(f) “om T  dm?z © ’

which yields equation (15) of the text.

d) (3-P)% = 0i0; PP = (03 + i€;jr0k) P Py = P? as P, P; is symmetric and €;;;, antisymmetric under
the exchange ¢ <> j. Moreover

Hence
. o )
Ho = L@ [ P)e Pe—av(@®) ~ (@ Pl P.e—av(@)]
_ ﬁQ V(i 1 P2 Viz 4 s ﬁ % 6‘/
= ot V(@ ~ 5 Pe—aV(@) + 5 5@ P)@- (VV)

The last term is the spin-orbit coupling Hamiltonian ; thanks to the properties of multiplication of the
Pauli matrices one has

(@-P)(G-(VV))=P-(VV)+id-(PA(VV))

For a spherically symmetric potential VvV = FV,T(T), which explains the second term in (17) with

b(r) = qV'(r)/(4r). Moreover one can check (by applying these operators to arbitrary test functions)
that for any spherically symmetric function f(r) one has P A f(r)F = f(r)F A P = f(r)L, hence the
first term in (17) with a(r) = —¢V’(r)/(2r), the spin operator being S = 7/2.

e) At the lowest order the wave function ¢ obeys (e — ¢V)p = %gp, one can thus replace in the
correction term of Hp

(P?)?

~8m3

1 -
——~ _P2(c— 7)) =

6 The axial current

a) As 75 anticommutes with the y*’s; (y5)Py* = (—1)PyH(~5)P for integer values of p; expanding the
exponential in series then shows the identity e?5y# = yHe =" As ~5 is Hermitian,

Bla) = (9%9) in® = plemin® = plinleie = (a)eir
b) Indeed, 1) is not invariant under this transformation, whereas ¥y"1 is :

Dip — P> Y £ P
Pyep — Pel MBIV = Yyl TNy = e

Consider the variation of the massless action under an infinitesimal transformation with dv¢ = ievys1),
01 = ieys, where € is space dependent :

08 = /d4$ W(_V#au + iQW#Au)iE’VE)lb + ie@VS(_’Yﬂau + iQVﬂAu)w] = /d4$ [_i(aue)E’Y#’YMﬁ] )



the other terms vanishing because 5 anticommutes with the v*’s. Integrating by part we see that
when the Euler-Lagrange equations are verified d,j5 = 0, i.e. the axial current is conserved for a
massless Dirac field.

¢) The Dirac equations for ¢ and v are

@—iqgA+m)p=0,  B(P+igh—m)=0,

-
where the derivatives in @ acts on the left. Hence
_ _ _ _ _
Ais = WO +i(0u) MY = Whys P — ih Pyst = i) [ys (ig A — m) — (—igA+m)vs] ¥
= —2imiryst)
as Ays = —y5 A We find again that j£ is conserved if and only if m = 0.
d) Taking the complex conjugate of the u-th component of j5 we obtain
()" = =il ysy )t = i (7)1 ()i (1°) T = i Tin #2035 (1) = 4t

which is thus real. Under a Lorentz transformation x — 2’ = Ax one has

{Zﬁﬁi@ ::iigngéiil S (Y() = (@) DA) sy D(A)(x) |

where D(A) = exp[%wufy“”] expands into terms that contain an even number of v# matrices, hence
commutes with v5. As D(A)"!y*D(A) = A,4”, one has (j£)(2') = A*,j¥(z), i.e. js transforms as a
four-vector under Lorentz transformations. Under the parity transformation,

{@m»=w%m>

U (2') = ¥(x)ir° = (G5 (@) = W (@)in vy in W (x) = i(@)rsn " (@)

—yHif u=0
Pl =0 : (1)
+4#if p=1,2,3

one obtains that j5 is a pseudo-vector.



