ENS ICFP MASTER - First year - 2018/2019 Relativistic quantum mechanics and introduction to quantum field theory Solution of the homework

1 Some operator identities

Note first that if O(t) is a t-dependent operator whose derivative $\frac{dO}{dt}$ commutes with O(t), then $\frac{d}{dt}e^{O(t)} = \frac{dO}{dt}e^{O(t)} = e^{O(t)}\frac{dO}{dt}$, as can be proven by deriving term by term the series defining the exponential.

a) With O(t) = tA, one has $\frac{dO}{dt} = A$ that commutes with O(t), hence

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(e^{tA} X e^{-tA} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{tA} \right) X e^{-tA} + e^{tA} X \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{-tA} \right) = e^{tA} (AX - XA) e^{-tA}$$
$$= e^{tA} [A, X] e^{-tA}$$

for any operator X. By induction on n one deduces that

$$\frac{\mathrm{d}^n}{\mathrm{d}t^n}F(t) = \frac{\mathrm{d}^n}{\mathrm{d}t^n} \left(e^{tA}Be^{-tA}\right) = e^{tA}[A, [A, \dots, [A, B] \dots]]e^{-tA}$$

with n commutators. The identity (1) of the problem then follows from

$$F(1) = F(0) + \sum_{n=1}^{\infty} \frac{1}{n!} \left. \frac{\mathrm{d}^n}{\mathrm{d}t^n} F(t) \right|_{t=0} ;$$

the Taylor expansion of F(t) in 0 has indeed an infinite radius of convergence for bounded operators A.

b) One computes the derivative of G(t) as suggested,

$$\frac{\mathrm{d}G}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{tA} e^{tB} \right) = A e^{tA} e^{tB} + e^{tA} B e^{tB} = A e^{tA} e^{tB} + \left(e^{tA} B e^{-tA} \right) e^{tA} e^{tB}$$
$$= A e^{tA} e^{tB} + \left(B + t[A, B] \right) e^{tA} e^{tB} ,$$

where in the last step we used the identity (1), the series stopping at n = 1 because A commutes with [A, B]. The differential equation thus obtained, $\frac{dG}{dt} = (A + B + t[A, B])G(t)$, with $G(0) = \mathbf{1}$, can be integrated in $G(t) = \exp\left[t(A + B) + \frac{t^2}{2}[A, B]\right]$ thanks to the preliminary remark above and the commutation of A + B with [A, B]. The identity (2) then follows with t = 1.

c) Taking $A = \int d\vec{q}g(\vec{q})a^{\dagger}(\vec{q})$ and $B = \int d\vec{q}f(\vec{q})a(\vec{q})$, one has $[A, B] = \int d\vec{q_1}d\vec{q_2}g(\vec{q_1})f(\vec{q_2})[a^{\dagger}(\vec{q_1}), a(\vec{q_2})] = -\int d\vec{q}g(\vec{q})f(\vec{q})$; then (3) follows directly from (2).

2 Some Lorentz algebra

We shall use the identity (1) with $A = -\frac{i}{2}\omega_{\rho\sigma}J^{\rho\sigma}$ and $B = P^{\mu}$. We compute the commutator

$$[A,B] = -\frac{i}{2}\omega_{\rho\sigma}[J^{\rho\sigma},P^{\mu}] = -\frac{i}{2}\omega_{\rho\sigma}(-i)(\eta^{\sigma\mu}P^{\rho} - \eta^{\rho\mu}P^{\sigma}) = \omega_{\rho\sigma}\eta^{\rho\mu}P^{\sigma} = \omega^{\mu}{}_{\sigma}P^{\sigma} ,$$

where we used (3.50) from the lecture notes and the antisymmetry of $\omega_{\rho\sigma}$. We have thus

$$[A, P^{\mu}] = \omega^{\mu}{}_{\rho} P^{\rho} , \qquad \text{hence} \quad [A, [A, \dots [A, P^{\mu}] \dots]] = (\omega^{n})^{\mu}{}_{\rho} P^{\rho}$$

with n commutators on the left-hand-side and ω^n being the n-th matrix power of ω . The identity (5) is then obtained by resumming the series in (1) to obtain $e^{\omega} = \Lambda$.

3 Relations for products of γ -matrices and their traces

The Clifford algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbf{1}$ translates into $(\gamma^0)^2 = -\mathbf{1}$, $(\gamma^i)^2 = \mathbf{1}$ for i = 1, 2, 3, and the anti-commutation of γ^{μ} and γ^{ν} if $\mu \neq \nu$. The matrices with covariant indices are defined as usual by $\gamma_0 = -\gamma^0$, $\gamma_i = \gamma^i$ for i = 1, 2, 3.

$$\begin{split} \gamma_{\mu}\gamma^{\mu} &= -(\gamma^{0})^{2} + (\gamma^{1})^{2} + (\gamma^{2})^{2} + (\gamma^{3})^{2} = 4 \times \mathbf{1} \\ \gamma_{\mu}\gamma^{\nu}\gamma^{\mu} &= \gamma_{\mu}(\{\gamma^{\nu},\gamma^{\mu}\} - \gamma^{\mu}\gamma^{\nu}) = 2\eta^{\mu\nu}\gamma_{\mu} - \gamma_{\mu}\gamma^{\mu}\gamma^{\nu} = -2\gamma^{\nu}, \text{ by using the previous result.} \\ \gamma_{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\mu} &= \gamma_{\mu}\gamma^{\nu}(\{\gamma^{\rho},\gamma^{\mu}\} - \gamma^{\mu}\gamma^{\rho}) = 2\eta^{\rho\mu}\gamma_{\mu}\gamma^{\nu} - \gamma_{\mu}\gamma^{\nu}\gamma^{\mu}\gamma^{\rho} = 2\gamma^{\rho}\gamma^{\nu} + 2\gamma^{\nu}\gamma^{\rho} = 2\{\gamma^{\rho},\gamma^{\nu}\} = 4\eta^{\rho\nu} \times \mathbf{1} \\ \gamma_{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{\mu} &= \gamma_{\mu}\gamma^{\nu}\gamma^{\rho}(\{\gamma^{\sigma},\gamma^{\mu}\} - \gamma^{\mu}\gamma^{\sigma}) = 2\eta^{\sigma\mu}\gamma_{\mu}\gamma^{\nu}\gamma^{\rho} - 4\eta^{\rho\nu}\gamma^{\sigma} = 2\gamma^{\sigma}(\gamma^{\nu}\gamma^{\rho} - \{\gamma^{\nu},\gamma^{\rho}\}) = -2\gamma^{\sigma}\gamma^{\rho}\gamma^{\nu} \\ \operatorname{tr}\gamma_{\mu}\gamma_{\nu} &= \frac{1}{2}\operatorname{tr}(\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu}) = \eta_{\mu\nu}\operatorname{tr}\mathbf{1} = 4\eta_{\mu\nu} \end{split}$$

In the following proof we move γ_{μ} to the right by using the Clifford algebra :

$$\operatorname{tr} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} = 2\eta_{\mu\nu} \operatorname{tr} \gamma_{\rho} \gamma_{\sigma} - \operatorname{tr} \gamma_{\nu} \gamma_{\mu} \gamma_{\rho} \gamma_{\sigma} = 2\eta_{\mu\nu} \operatorname{tr} \gamma_{\rho} \gamma_{\sigma} - 2\eta_{\mu\rho} \operatorname{tr} \gamma_{\nu} \gamma_{\sigma} + \operatorname{tr} \gamma_{\nu} \gamma_{\rho} \gamma_{\mu} \gamma_{\sigma} = 2\eta_{\mu\nu} \operatorname{tr} \gamma_{\rho} \gamma_{\sigma} - 2\eta_{\mu\rho} \operatorname{tr} \gamma_{\nu} \gamma_{\sigma} + 2\eta_{\mu\sigma} \operatorname{tr} \gamma_{\nu} \gamma_{\rho} - \operatorname{tr} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{\mu}$$

By the cyclicity of the trace the last term on the right is equal to the term on the left hand side, hence $\operatorname{tr} \gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma} = \frac{1}{2}(2\eta_{\mu\nu}\operatorname{tr}\gamma_{\rho}\gamma_{\sigma} - 2\eta_{\mu\rho}\operatorname{tr}\gamma_{\nu}\gamma_{\sigma} + 2\eta_{\mu\sigma}\operatorname{tr}\gamma_{\nu}\gamma_{\rho}) = 4(\eta_{\mu\nu}\eta_{\rho\sigma} - \eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho})$

We recall that $\gamma_5 = -i\gamma^0\gamma^1\gamma^2\gamma^3$ is a matrix that anticommutes with the four γ^{μ} 's, and that square to one. Thus

$$\operatorname{tr} \gamma_{\mu_1} \dots \gamma_{\mu_{2n+1}} = \operatorname{tr} \gamma_5 \gamma_5 \gamma_{\mu_1} \dots \gamma_{\mu_{2n+1}} = \begin{cases} \operatorname{tr} \gamma_5 \gamma_{\mu_1} \dots \gamma_{\mu_{2n+1}} \gamma_5 \\ -\operatorname{tr} \gamma_5 \gamma_{\mu_1} \dots \gamma_{\mu_{2n+1}} \gamma_5 \end{cases}$$

where in the first line we used the cyclicity of the trace, and in the second line the fact that γ_5 anticommutes with the product of an odd number of γ^{μ} 's. This implies that tr $\gamma_{\mu_1} \dots \gamma_{\mu_{2n+1}} = 0$.

4 Energy levels of a relativistic charged spin-0 particle in a constant magnetic field

a) With $\vec{A} = A_z(x, y, z)\vec{e}_z$ the associated magnetic field is $\vec{B} = \vec{\nabla} \wedge \vec{A} = (\partial_y A_z)\vec{e}_x - (\partial_x A_z)\vec{e}_y$, we can thus take $A_z = -Bx$ to have $\vec{B} = B\vec{e}_y$. The Klein-Gordon equation in presence of an electromagnetic potential is

$$\left[-(\partial_{\mu} - iqA_{\mu})(\partial^{\mu} - iqA^{\mu}) + m^2\right]\phi = 0 \; .$$

With the above choice for \vec{A} one obtains

$$\left[\frac{\partial^2}{\partial t^2} - \Delta + m^2 + q^2 B^2 x^2 - 2iq Bx \frac{\partial}{\partial z}\right] \phi(t, \vec{x}) = 0 ,$$

with Δ the spatial Laplacian.

b) We shall look for a stationary solution of the form $\phi(t, \vec{x}) = e^{-iEt}\varphi(\vec{x})$, where $\varphi(\vec{x})$ obeys

$$\left[-E^2 - \Delta + m^2 + q^2 B^2 x^2 - 2iq B x \frac{\partial}{\partial z}\right] \varphi(\vec{x}) = 0 \; .$$

Denoting the momentum operator $\vec{P} = -i\vec{\nabla}$ this can be rewritten as an eigenvalue problem,

$$[P_x^2 + P_y^2 + (P_z + qBX)^2]\varphi = (E^2 - m^2)\varphi.$$

As the operator in the left hand side commutes with P_y and P_z we can look for a common eigenvector, i.e. take $\varphi(x, y, z) = e^{ik_y y + ik_z z} \chi(x)$, with

$$\left[P_x^2 + (qB)^2 \left(X + \frac{k_z}{qB}\right)^2\right] \chi = (E^2 - m^2 - k_y^2)\chi \; .$$

Dividing by 2m we obtain

$$\left[\frac{P_x^2}{2m} + \frac{1}{2}m\left(\frac{qB}{m}\right)^2 \left(X + \frac{k_z}{qB}\right)^2\right]\chi = \frac{E^2 - m^2 - k_y^2}{2m}\chi \ .$$

One recognizes a Schrödinger equation for an harmonic oscillator of mass m and frequency $\omega = qB/m$, the location of the center $x_0 = -k_z/(qB)$ of the harmonic well being fixed by k_z . The eigenvalues of this problem are $\omega(n + (1/2))$, with $n = 0, 1, \ldots$, hence

$$E(n,k_y) = \sqrt{m^2 + k_y^2 + qB(2n+1)} , \qquad \varphi(\vec{x}) = e^{ik_y y + ik_z z} e^{-\frac{qB}{2}(x + (k_z/qB))^2} H_n(\sqrt{qB}(x + (k_z/qB))) ,$$

with H_n the Hermite polynomials. For each value of n and k_y there is an infinite degeneracy due to the free choice of k_z .

c) Expanding in the large m limit the above expression yields

$$E(n,k_y) = m + \left[\frac{k_y^2}{2m} + \frac{qB}{m}\left(n + \frac{1}{2}\right)\right] - \frac{1}{8m^3}\left(k_y^2 + 2qB\left(n + \frac{1}{2}\right)\right)^2 + \dots$$

The first term is the rest mass energy, the square bracket is the non-relativistic result that would have been obtained with the Schrödinger equation, the last term is the first relativistic correction.

d) The magnetic field is invariant under the transformation $\vec{A} \to \vec{A} + \vec{\nabla} f$, for an arbitrary function $f(\vec{x})$. The Klein-Gordon equation is invariant if one performs simultaneously the gauge transformation $\phi \to \phi e^{iqf}$, hence a different choice of vector potential would only add a (space-dependent) phase to the wavefunctions, but does not change the energies of the Landau levels.

5 Weakly relativistic limit of the Dirac equation and spin-orbit coupling

a) In the Dirac representation

$$\gamma^0 = -i \begin{pmatrix} \mathrm{Id} & 0\\ 0 & -\mathrm{Id} \end{pmatrix}, \qquad \gamma^j = -i \begin{pmatrix} 0 & \sigma_j\\ -\sigma_j & 0 \end{pmatrix}$$

The Dirac equation in presence of an electrostatic potential $V(\vec{x})$ reads

$$\left(\gamma^0 \left(\frac{\partial}{\partial t} + iqV(\vec{x})\right) + \vec{\gamma} \cdot \vec{\nabla} + m\right) \psi(t, \vec{x}) = 0$$

For a wave-function of the form proposed in the text, and using the Dirac representation of the gamma matrices, one obtains the following coupled equations for φ and χ :

$$\begin{cases} (-\epsilon + qV(\vec{x})\varphi(\vec{x}) - i(\vec{\sigma}\cdot\vec{\nabla})\chi(\vec{x}) = 0\\ (2m + \epsilon - qV(\vec{x}))\chi(\vec{x}) + i(\vec{\sigma}\cdot\vec{\nabla})\varphi(\vec{x}) = 0 \end{cases}$$

b) With the second equation one gets χ in terms of φ as

$$\chi(\vec{x}) = \frac{1}{2m + \epsilon - qV(\vec{x})} (-i\vec{\sigma} \cdot \vec{\nabla})\varphi(\vec{x}) \; .$$

Reinserting in the first equation yields

$$\epsilon \varphi(\vec{x}) = \left[qV(\vec{x}) + (-i\vec{\sigma} \cdot \vec{\nabla}) \frac{1}{2m + \epsilon - qV(\vec{x})} (-i\vec{\sigma} \cdot \vec{\nabla}) \right] \varphi(\vec{x}) \; ,$$

i.e. the form of the text with

$$f(\vec{x}) = qV(\vec{x}) , \qquad g(\vec{x}) = \frac{1}{2m + \epsilon - qV(\vec{x})} .$$

c) Expanding at large m one has

$$g(\vec{x}) = \frac{1}{2m} \frac{1}{1 + \frac{\epsilon - qV(\vec{x})}{2m}} = \frac{1}{2m} - \frac{\epsilon - qV(\vec{x})}{4m^2} + O\left(\frac{\epsilon^2}{m^3}\right) \ ,$$

which yields equation (15) of the text.

d) $(\vec{\sigma} \cdot \vec{P})^2 = \sigma_i \sigma_j P_i P_j = (\delta_{ij} + i\epsilon_{ijk}\sigma_k)P_i P_j = \vec{P}^2$ as $P_i P_j$ is symmetric and ϵ_{ijk} antisymmetric under the exchange $i \leftrightarrow j$. Moreover

$$[\vec{\sigma} \cdot \vec{P}, \epsilon - qV(\vec{x})] = -q\vec{\sigma} \cdot [\vec{P}, V(\vec{x})] = iq\vec{\sigma} \cdot (\vec{\nabla}V) \ .$$

Hence

$$H_{P} = \frac{\vec{P}^{2}}{2m} + qV(\vec{x}) - \frac{1}{4m^{2}} \left[(\vec{\sigma} \cdot \vec{P})(\vec{\sigma} \cdot \vec{P})(\epsilon - qV(\vec{x})) - (\vec{\sigma} \cdot \vec{P})[\vec{\sigma} \cdot \vec{P}, \epsilon - qV(\vec{x})] \right]$$

$$= \frac{\vec{P}^{2}}{2m} + qV(\vec{x}) - \frac{1}{4m^{2}} \vec{P}^{2}(\epsilon - qV(\vec{x})) + \frac{iq}{4m^{2}} (\vec{\sigma} \cdot \vec{P})(\vec{\sigma} \cdot (\vec{\nabla}V))$$

The last term is the spin-orbit coupling Hamiltonian; thanks to the properties of multiplication of the Pauli matrices one has

$$(\vec{\sigma}\cdot\vec{P})(\vec{\sigma}\cdot(\vec{\nabla}V))=\vec{P}\cdot(\vec{\nabla}V)+i\vec{\sigma}\cdot(\vec{P}\wedge(\vec{\nabla}V))$$

For a spherically symmetric potential $\vec{\nabla}V = \vec{r}\frac{V'(r)}{r}$, which explains the second term in (17) with b(r) = qV'(r)/(4r). Moreover one can check (by applying these operators to arbitrary test functions) that for any spherically symmetric function f(r) one has $\vec{P} \wedge f(r)\vec{r} = f(r)\vec{r} \wedge \vec{P} = f(r)\vec{L}$, hence the first term in (17) with a(r) = -qV'(r)/(2r), the spin operator being $\vec{S} = \vec{\sigma}/2$.

e) At the lowest order the wave function φ obeys $(\epsilon - qV)\varphi = \frac{\vec{P}^2}{2m}\varphi$, one can thus replace in the correction term of H_P

$$-\frac{1}{4m^2}\vec{P}^2(\epsilon - qV(\vec{x})) = -\frac{(\vec{P}^2)^2}{8m^3}$$

6 The axial current

a) As γ_5 anticommutes with the γ^{μ} 's, $(\gamma_5)^p \gamma^{\mu} = (-1)^p \gamma^{\mu} (\gamma_5)^p$ for integer values of p; expanding the exponential in series then shows the identity $e^{i\epsilon\gamma_5}\gamma^{\mu} = \gamma^{\mu}e^{-i\epsilon\gamma_5}$. As γ_5 is Hermitian,

$$\overline{\psi}(x) \to \left(e^{i\epsilon\gamma_5}\psi\right)^{\dagger} i\gamma^0 = \psi^{\dagger}e^{-i\epsilon\gamma_5}i\gamma^0 = \psi^{\dagger}i\gamma^0 e^{i\epsilon\gamma_5} = \overline{\psi}(x)e^{i\epsilon\gamma_5}$$

b) Indeed, $\overline{\psi}\psi$ is not invariant under this transformation, whereas $\overline{\psi}\gamma^{\mu}\psi$ is :

$$\overline{\psi}\psi \to \overline{\psi}e^{2i\epsilon\gamma_5}\psi \neq \overline{\psi}\psi \overline{\psi}\gamma^{\mu}\psi \to \overline{\psi}e^{i\epsilon\gamma_5}\gamma^{\mu}e^{i\epsilon\gamma_5}\psi = \overline{\psi}\gamma^{\mu}e^{-i\epsilon\gamma_5}e^{i\epsilon\gamma_5}\psi = \overline{\psi}\gamma^{\mu}\psi$$

Consider the variation of the massless action under an infinitesimal transformation with $\delta \psi = i\epsilon\gamma_5\psi$, $\delta\overline{\psi} = i\epsilon\overline{\psi}\gamma_5$, where ϵ is space dependent :

$$\delta S = \int \mathrm{d}^4 x \left[\overline{\psi} (-\gamma^\mu \partial_\mu + iq\gamma^\mu A_\mu) i\epsilon \gamma_5 \psi + i\epsilon \overline{\psi} \gamma_5 (-\gamma^\mu \partial_\mu + iq\gamma^\mu A_\mu) \psi \right] = \int \mathrm{d}^4 x \left[-i(\partial_\mu \epsilon) \overline{\psi} \gamma^\mu \gamma_5 \psi \right] \;,$$

the other terms vanishing because γ_5 anticommutes with the γ^{μ} 's. Integrating by part we see that when the Euler-Lagrange equations are verified $\partial_{\mu} j_5^{\mu} = 0$, i.e. the axial current is conserved for a massless Dirac field.

c) The Dirac equations for ψ and $\overline{\psi}$ are

$$(\partial\hspace{-.15cm}/ -iq A\hspace{-.15cm}/ +m)\psi=0, \qquad \overline{\psi}(\overleftarrow{\partial\hspace{-.15cm}/} +iq A\hspace{-.15cm}/ -m)=0 \ ,$$

where the derivatives in $\stackrel{\leftarrow}{\not\partial}$ acts on the left. Hence

$$\partial_{\mu} j_{5}^{\mu} = i\overline{\psi}\gamma_{5}\gamma^{\mu}\partial_{\mu}\psi + i(\partial_{\mu}\overline{\psi})\gamma_{5}\gamma^{\mu}\psi = i\overline{\psi}\gamma_{5}\partial\!\!\!/\psi - i\overline{\psi}\partial\!\!\!/_{\partial}\gamma_{5}\psi = i\overline{\psi}\left[\gamma_{5}(iqA - m) - (-iqA + m)\gamma_{5}\right]\psi \\ = -2im\overline{\psi}\gamma_{5}\psi$$

as $A\gamma_5 = -\gamma_5 A$. We find again that j_5^{μ} is conserved if and only if m = 0.

d) Taking the complex conjugate of the μ -th component of j_5 we obtain

$$(j_5^{\mu})^* = -i(\psi^{\dagger}i\gamma^0\gamma_5\gamma^{\mu}\psi)^{\dagger} = i\psi^{\dagger}(\gamma^{\mu})^{\dagger}(\gamma_5)^{\dagger}i(\gamma^0)^{\dagger}\psi = i\psi^{\dagger}i\gamma^0\gamma^{\mu}\gamma^0\gamma_5(-\gamma^0)\psi = j_5^{\mu} ,$$

which is thus real. Under a Lorentz transformation $x \to x' = \Lambda x$ one has

$$\begin{cases} \psi'(x') = D(\Lambda)\psi(x) \\ \overline{\psi}'(x') = \overline{\psi}(x)D(\Lambda)^{-1} \end{cases} \Rightarrow \qquad (j_5^{\mu})'(x') = i\overline{\psi}(x)D(\Lambda)^{-1}\gamma_5\gamma^{\mu}D(\Lambda)\psi(x) ,$$

where $D(\Lambda) = \exp[\frac{1}{4}\omega_{\mu\nu}\gamma^{\mu\nu}]$ expands into terms that contain an even number of γ^{μ} matrices, hence commutes with γ_5 . As $D(\Lambda)^{-1}\gamma^{\mu}D(\Lambda) = \Lambda^{\mu}{}_{\nu}\gamma^{\nu}$, one has $(j_5^{\mu})'(x') = \Lambda^{\mu}{}_{\nu}j_5^{\nu}(x)$, i.e. j_5 transforms as a four-vector under Lorentz transformations. Under the parity transformation,

$$\begin{cases} \psi'(x') = i\gamma^0\psi(x) \\ \overline{\psi}'(x') = \overline{\psi}(x)i\gamma^0 \end{cases} \Rightarrow \qquad (j_5^{\mu})'(x') = i\overline{\psi}(x)i\gamma^0\gamma_5\gamma^{\mu}i\gamma^0\psi(x) = i\overline{\psi}(x)\gamma_5\gamma^0\gamma^{\mu}\gamma^0\psi(x) . \end{cases}$$

As

,

$$\gamma^{0}\gamma^{\mu}\gamma^{0} = \begin{cases} -\gamma^{\mu} & \text{if } \mu = 0 \\ +\gamma^{\mu} & \text{if } \mu = 1, 2, 3 \end{cases},$$
(1)

one obtains that j_5 is a pseudo-vector.