
ENS ICFP MASTER - First year - 2018/2019
Relativistic quantum mechanics and introduction to quantum field theory

Solution of the homework

1 Some operator identities

Note first that if O(t) is a t-dependent operator whose derivative dO
dt commutes with O(t), then

d
dte

O(t) = dO
dt e

O(t) = eO(t) dO
dt , as can be proven by deriving term by term the series defining the

exponential.

a) With O(t) = tA, one has dO
dt = A that commutes with O(t), hence

d

dt

(
etAXe−tA

)
=

d

dt

(
etA
)
Xe−tA + etAX

d

dt

(
e−tA

)
= etA(AX −XA)e−tA

= etA[A,X]e−tA

for any operator X. By induction on n one deduces that

dn

dtn
F (t) =

dn

dtn
(
etABe−tA

)
= etA[A, [A, . . . , [A,B] . . . ]]e−tA

with n commutators. The identity (1) of the problem then follows from

F (1) = F (0) +
∞∑
n=1

1

n!

dn

dtn
F (t)

∣∣∣∣
t=0

;

the Taylor expansion of F (t) in 0 has indeed an infinite radius of convergence for bounded operators
A.

b) One computes the derivative of G(t) as suggested,

dG

dt
=

d

dt

(
etAetB

)
= AetAetB + etABetB = AetAetB +

(
etABe−tA

)
etAetB

= AetAetB + (B + t[A,B]) etAetB ,

where in the last step we used the identity (1), the series stopping at n = 1 because A commutes
with [A,B]. The differential equation thus obtained, dG

dt = (A+B + t[A,B])G(t), with G(0) = 1, can

be integrated in G(t) = exp
[
t(A+B) + t2

2 [A,B]
]

thanks to the preliminary remark above and the

commutation of A+B with [A,B]. The identity (2) then follows with t = 1.

c) TakingA =
∫

d~qg(~q)a†(~q) andB =
∫

d~qf(~q)a(~q), one has [A,B] =
∫

d~q1d~q2g(~q1)f(~q2)[a
†(~q1), a(~q2)] =

−
∫

d~qg(~q)f(~q) ; then (3) follows directly from (2).

2 Some Lorentz algebra

We shall use the identity (1) with A = − i
2ωρσJ

ρσ and B = Pµ. We compute the commutator

[A,B] = − i
2
ωρσ[Jρσ, Pµ] = − i

2
ωρσ(−i)(ησµP ρ − ηρµP σ) = ωρση

ρµP σ = ωµσP
σ ,

where we used (3.50) from the lecture notes and the antisymmetry of ωρσ. We have thus

[A,Pµ] = ωµρ P
ρ , hence [A, [A, . . . [A,Pµ] . . . ]] = (ωn)µρP

ρ

with n commutators on the left-hand-side and ωn being the n-th matrix power of ω. The identity (5)
is then obtained by resumming the series in (1) to obtain eω = Λ.
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3 Relations for products of γ-matrices and their traces

The Clifford algebra {γµ, γν} = 2ηµν1 translates into (γ0)2 = −1, (γi)2 = 1 for i = 1, 2, 3, and the
anti-commutation of γµ and γν if µ 6= ν. The matrices with covariant indices are defined as usual by
γ0 = −γ0, γi = γi for i = 1, 2, 3.

γµγ
µ = −(γ0)2 + (γ1)2 + (γ2)2 + (γ3)2 = 4× 1

γµγ
νγµ = γµ({γν , γµ} − γµγν) = 2ηµνγµ − γµγµγν = −2γν , by using the previous result.

γµγ
νγργµ = γµγ

ν({γρ, γµ} − γµγρ) = 2ηρµγµγ
ν − γµγνγµγρ = 2γργν + 2γνγρ = 2{γρ, γν} = 4ηρν × 1

γµγ
νγργσγµ = γµγ

νγρ({γσ, γµ}− γµγσ) = 2ησµγµγ
νγρ− 4ηρνγσ = 2γσ(γνγρ−{γν , γρ}) = −2γσγργν

tr γµγν = 1
2tr (γµγν + γνγµ) = ηµνtr 1 = 4ηµν

In the following proof we move γµ to the right by using the Clifford algebra :

tr γµγνγργσ = 2ηµνtr γργσ − tr γνγµγργσ

= 2ηµνtr γργσ − 2ηµρtr γνγσ + tr γνγργµγσ

= 2ηµνtr γργσ − 2ηµρtr γνγσ + 2ηµσtr γνγρ − tr γνγργσγµ

By the cyclicity of the trace the last term on the right is equal to the term on the left hand side, hence
tr γµγνγργσ = 1

2(2ηµνtr γργσ − 2ηµρtr γνγσ + 2ηµσtr γνγρ) = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ)

We recall that γ5 = −iγ0γ1γ2γ3 is a matrix that anticommutes with the four γµ’s, and that square to
one. Thus

tr γµ1 . . . γµ2n+1 = tr γ5γ5γµ1 . . . γµ2n+1 =

{
tr γ5γµ1 . . . γµ2n+1γ5

−tr γ5γµ1 . . . γµ2n+1γ5
,

where in the first line we used the cyclicity of the trace, and in the second line the fact that γ5
anticommutes with the product of an odd number of γµ’s. This implies that tr γµ1 . . . γµ2n+1 = 0.

4 Energy levels of a relativistic charged spin-0 particle in a constant
magnetic field

a) With ~A = Az(x, y, z)~ez the associated magnetic field is ~B = ~∇∧ ~A = (∂yAz)~ex − (∂xAz)~ey, we can

thus take Az = −Bx to have ~B = B~ey. The Klein-Gordon equation in presence of an electromagnetic
potential is [

−(∂µ − iqAµ)(∂µ − iqAµ) +m2
]
φ = 0 .

With the above choice for ~A one obtains[
∂2

∂t2
−∆ +m2 + q2B2x2 − 2iqBx

∂

∂z

]
φ(t, ~x) = 0 ,

with ∆ the spatial Laplacian.

b) We shall look for a stationary solution of the form φ(t, ~x) = e−iEtϕ(~x), where ϕ(~x) obeys[
−E2 −∆ +m2 + q2B2x2 − 2iqBx

∂

∂z

]
ϕ(~x) = 0 .

Denoting the momentum operator ~P = −i~∇ this can be rewritten as an eigenvalue problem,[
P 2
x + P 2

y + (Pz + qBX)2
]
ϕ = (E2 −m2)ϕ.

As the operator in the left hand side commutes with Py and Pz we can look for a common eigenvector,
i.e. take ϕ(x, y, z) = eikyy+ikzzχ(x), with[

P 2
x + (qB)2

(
X +

kz
qB

)2
]
χ = (E2 −m2 − k2y)χ .
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Dividing by 2m we obtain[
P 2
x

2m
+

1

2
m

(
qB

m

)2(
X +

kz
qB

)2
]
χ =

E2 −m2 − k2y
2m

χ .

One recognizes a Schrödinger equation for an harmonic oscillator of mass m and frequency ω = qB/m,
the location of the center x0 = −kz/(qB) of the harmonic well being fixed by kz. The eigenvalues of
this problem are ω(n+ (1/2)), with n = 0, 1, . . . , hence

E(n, ky) =
√
m2 + k2y + qB(2n+ 1) , ϕ(~x) = eikyy+ikzze−

qB
2
(x+(kz/qB))2Hn(

√
qB(x+ (kz/qB))) ,

with Hn the Hermite polynomials. For each value of n and ky there is an infinite degeneracy due to
the free choice of kz.

c) Expanding in the large m limit the above expression yields

E(n, ky) = m+

[
k2y
2m

+
qB

m

(
n+

1

2

)]
− 1

8m3

(
k2y + 2qB

(
n+

1

2

))2

+ . . .

The first term is the rest mass energy, the square bracket is the non-relativistic result that would have
been obtained with the Schrödinger equation, the last term is the first relativistic correction.

d) The magnetic field is invariant under the transformation ~A → ~A + ~∇f , for an arbitrary function
f(~x). The Klein-Gordon equation is invariant if one performs simultaneously the gauge transformation
φ → φeiqf , hence a different choice of vector potential would only add a (space-dependent) phase to
the wavefunctions, but does not change the energies of the Landau levels.

5 Weakly relativistic limit of the Dirac equation and spin-orbit cou-
pling

a) In the Dirac representation

γ0 = −i
(

Id 0
0 −Id

)
, γj = −i

(
0 σj
−σj 0

)
.

The Dirac equation in presence of an electrostatic potential V (~x) reads(
γ0
(
∂

∂t
+ iqV (~x)

)
+ ~γ · ~∇+m

)
ψ(t, ~x) = 0 .

For a wave-function of the form proposed in the text, and using the Dirac representation of the gamma
matrices, one obtains the following coupled equations for ϕ and χ :{

(−ε+ qV (~x)ϕ(~x)− i(~σ · ~∇)χ(~x) = 0

(2m+ ε− qV (~x))χ(~x) + i(~σ · ~∇)ϕ(~x) = 0

b) With the second equation one gets χ in terms of ϕ as

χ(~x) =
1

2m+ ε− qV (~x)
(−i~σ · ~∇)ϕ(~x) .

Reinserting in the first equation yields

εϕ(~x) =

[
qV (~x) + (−i~σ · ~∇)

1

2m+ ε− qV (~x)
(−i~σ · ~∇)

]
ϕ(~x) ,
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i.e. the form of the text with

f(~x) = qV (~x) , g(~x) =
1

2m+ ε− qV (~x)
.

c) Expanding at large m one has

g(~x) =
1

2m

1

1 + ε−qV (~x)
2m

=
1

2m
− ε− qV (~x)

4m2
+O

(
ε2

m3

)
,

which yields equation (15) of the text.

d) (~σ · ~P )2 = σiσjPiPj = (δij + iεijkσk)PiPj = ~P 2 as PiPj is symmetric and εijk antisymmetric under
the exchange i↔ j. Moreover

[~σ · ~P , ε− qV (~x)] = −q~σ · [~P , V (~x)] = iq~σ · (~∇V ) .

Hence

HP =
~P 2

2m
+ qV (~x)− 1

4m2

[
(~σ · ~P )(~σ · ~P )(ε− qV (~x))− (~σ · ~P )[~σ · ~P , ε− qV (~x)]

]
=

~P 2

2m
+ qV (~x)− 1

4m2
~P 2(ε− qV (~x)) +

iq

4m2
(~σ · ~P )(~σ · (~∇V ))

The last term is the spin-orbit coupling Hamiltonian ; thanks to the properties of multiplication of the
Pauli matrices one has

(~σ · ~P )(~σ · (~∇V )) = ~P · (~∇V ) + i~σ · (~P ∧ (~∇V ))

For a spherically symmetric potential ~∇V = ~r V
′(r)
r , which explains the second term in (17) with

b(r) = qV ′(r)/(4r). Moreover one can check (by applying these operators to arbitrary test functions)
that for any spherically symmetric function f(r) one has ~P ∧ f(r)~r = f(r)~r ∧ ~P = f(r)~L, hence the
first term in (17) with a(r) = −qV ′(r)/(2r), the spin operator being ~S = ~σ/2.

e) At the lowest order the wave function ϕ obeys (ε − qV )ϕ =
~P 2

2mϕ, one can thus replace in the
correction term of HP

− 1

4m2
~P 2(ε− qV (~x)) = −(~P 2)2

8m3
.

6 The axial current

a) As γ5 anticommutes with the γµ’s, (γ5)
pγµ = (−1)pγµ(γ5)

p for integer values of p ; expanding the
exponential in series then shows the identity eiεγ5γµ = γµe−iεγ5 . As γ5 is Hermitian,

ψ(x)→
(
eiεγ5ψ

)†
iγ0 = ψ†e−iεγ5iγ0 = ψ†iγ0eiεγ5 = ψ(x)eiεγ5

b) Indeed, ψψ is not invariant under this transformation, whereas ψγµψ is :

ψψ → ψe2iεγ5ψ 6= ψψ

ψγµψ → ψeiεγ5γµeiεγ5ψ = ψγµe−iεγ5eiεγ5ψ = ψγµψ

Consider the variation of the massless action under an infinitesimal transformation with δψ = iεγ5ψ,
δψ = iεψγ5, where ε is space dependent :

δS =

∫
d4x

[
ψ(−γµ∂µ + iqγµAµ)iεγ5ψ + iεψγ5(−γµ∂µ + iqγµAµ)ψ

]
=

∫
d4x

[
−i(∂µε)ψγµγ5ψ

]
,
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the other terms vanishing because γ5 anticommutes with the γµ’s. Integrating by part we see that
when the Euler-Lagrange equations are verified ∂µj

µ
5 = 0, i.e. the axial current is conserved for a

massless Dirac field.

c) The Dirac equations for ψ and ψ are

(∂/− iqA/+m)ψ = 0, ψ(
←
∂/ + iqA/−m) = 0 ,

where the derivatives in
←
∂/ acts on the left. Hence

∂µj
µ
5 = iψγ5γ

µ∂µψ + i(∂µψ)γ5γ
µψ = iψγ5∂/ψ − iψ

←
∂/γ5ψ = iψ [γ5(iqA/−m)− (−iqA/+m)γ5]ψ

= −2imψγ5ψ

as A/γ5 = −γ5A/. We find again that jµ5 is conserved if and only if m = 0.

d) Taking the complex conjugate of the µ-th component of j5 we obtain

(jµ5 )∗ = −i(ψ†iγ0γ5γµψ)† = iψ†(γµ)†(γ5)
†i(γ0)†ψ = iψ†iγ0γµγ0γ5(−γ0)ψ = jµ5 ,

which is thus real. Under a Lorentz transformation x→ x′ = Λx one has{
ψ′(x′) = D(Λ)ψ(x)

ψ
′
(x′) = ψ(x)D(Λ)−1

⇒ (jµ5 )′(x′) = iψ(x)D(Λ)−1γ5γ
µD(Λ)ψ(x) ,

where D(Λ) = exp[14ωµνγ
µν ] expands into terms that contain an even number of γµ matrices, hence

commutes with γ5. As D(Λ)−1γµD(Λ) = Λµνγ
ν , one has (jµ5 )′(x′) = Λµνj

ν
5 (x), i.e. j5 transforms as a

four-vector under Lorentz transformations. Under the parity transformation,{
ψ′(x′) = iγ0ψ(x)

ψ
′
(x′) = ψ(x)iγ0

⇒ (jµ5 )′(x′) = iψ(x)iγ0γ5γ
µiγ0ψ(x) = iψ(x)γ5γ

0γµγ0ψ(x) .

As

γ0γµγ0 =

{
−γµ if µ = 0

+γµ if µ = 1, 2, 3
, (1)

one obtains that j5 is a pseudo-vector.
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