Relativistic quantum mechanics and introduction to quantum field theory Solution of the homework

1 Some operator identities

Note first that if $O(t)$ is a t-dependent operator whose derivative $\frac{\mathrm{d} O}{\mathrm{~d} t}$ commutes with $O(t)$, then $\frac{\mathrm{d}}{\mathrm{d} t} e^{O(t)}=\frac{\mathrm{d} O}{\mathrm{~d} t} e^{O(t)}=e^{O(t) \frac{\mathrm{d} O}{\mathrm{~d} t} \text {, as can be proven by deriving term by term the series defining the }}$ exponential.
a) With $O(t)=t A$, one has $\frac{\mathrm{d} O}{\mathrm{~d} t}=A$ that commutes with $O(t)$, hence

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{t A} X e^{-t A}\right) & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{t A}\right) X e^{-t A}+e^{t A} X \frac{\mathrm{~d}}{\mathrm{~d} t}\left(e^{-t A}\right)=e^{t A}(A X-X A) e^{-t A} \\
& =e^{t A}[A, X] e^{-t A}
\end{aligned}
$$

for any operator X. By induction on n one deduces that

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} \mathrm{t}^{n}} F(t)=\frac{\mathrm{d}^{n}}{\mathrm{~d} \mathrm{t}^{n}}\left(e^{t A} B e^{-t A}\right)=e^{t A}[A,[A, \ldots,[A, B] \ldots]] e^{-t A}
$$

with n commutators. The identity (1) of the problem then follows from

$$
F(1)=F(0)+\left.\sum_{n=1}^{\infty} \frac{1}{n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}} F(t)\right|_{t=0}
$$

the Taylor expansion of $F(t)$ in 0 has indeed an infinite radius of convergence for bounded operators A.
b) One computes the derivative of $G(t)$ as suggested,

$$
\begin{aligned}
\frac{\mathrm{d} G}{\mathrm{~d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{t A} e^{t B}\right)=A e^{t A} e^{t B}+e^{t A} B e^{t B}=A e^{t A} e^{t B}+\left(e^{t A} B e^{-t A}\right) e^{t A} e^{t B} \\
& =A e^{t A} e^{t B}+(B+t[A, B]) e^{t A} e^{t B}
\end{aligned}
$$

where in the last step we used the identity (1), the series stopping at $n=1$ because A commutes with $[A, B]$. The differential equation thus obtained, $\frac{\mathrm{d} G}{\mathrm{~d} t}=(A+B+t[A, B]) G(t)$, with $G(0)=\mathbf{1}$, can be integrated in $G(t)=\exp \left[t(A+B)+\frac{t^{2}}{2}[A, B]\right]$ thanks to the preliminary remark above and the commutation of $A+B$ with $[A, B]$. The identity (2) then follows with $t=1$.
c) Taking $A=\int \mathrm{d} \vec{q} g(\vec{q}) a^{\dagger}(\vec{q})$ and $B=\int \mathrm{d} \vec{q} f(\vec{q}) a(\vec{q})$, one has $[A, B]=\int \mathrm{d} \overrightarrow{q_{1}} \mathrm{~d} \overrightarrow{q_{2}} g\left(\overrightarrow{q_{1}}\right) f\left(\overrightarrow{q_{2}}\right)\left[a^{\dagger}\left(\overrightarrow{q_{1}}\right), a\left(\overrightarrow{q_{2}}\right)\right]=$ $-\int \mathrm{d} \vec{q} g(\vec{q}) f(\vec{q})$; then (3) follows directly from (2).

2 Some Lorentz algebra

We shall use the identity (1) with $A=-\frac{i}{2} \omega_{\rho \sigma} J^{\rho \sigma}$ and $B=P^{\mu}$. We compute the commutator

$$
[A, B]=-\frac{i}{2} \omega_{\rho \sigma}\left[J^{\rho \sigma}, P^{\mu}\right]=-\frac{i}{2} \omega_{\rho \sigma}(-i)\left(\eta^{\sigma \mu} P^{\rho}-\eta^{\rho \mu} P^{\sigma}\right)=\omega_{\rho \sigma} \eta^{\rho \mu} P^{\sigma}=\omega^{\mu}{ }_{\sigma} P^{\sigma}
$$

where we used (3.50) from the lecture notes and the antisymmetry of $\omega_{\rho \sigma}$. We have thus

$$
\left[A, P^{\mu}\right]=\omega^{\mu}{ }_{\rho} P^{\rho}, \quad \text { hence } \quad\left[A,\left[A, \ldots\left[A, P^{\mu}\right] \ldots\right]\right]=\left(\omega^{n}\right)^{\mu}{ }_{\rho} P^{\rho}
$$

with n commutators on the left-hand-side and ω^{n} being the n-th matrix power of ω. The identity (5) is then obtained by resumming the series in (1) to obtain $e^{\omega}=\Lambda$.

3 Relations for products of γ-matrices and their traces

The Clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \mathbf{1}$ translates into $\left(\gamma^{0}\right)^{2}=-\mathbf{1},\left(\gamma^{i}\right)^{2}=\mathbf{1}$ for $i=1,2,3$, and the anti-commutation of γ^{μ} and γ^{ν} if $\mu \neq \nu$. The matrices with covariant indices are defined as usual by $\gamma_{0}=-\gamma^{0}, \gamma_{i}=\gamma^{i}$ for $i=1,2,3$.
$\gamma_{\mu} \gamma^{\mu}=-\left(\gamma^{0}\right)^{2}+\left(\gamma^{1}\right)^{2}+\left(\gamma^{2}\right)^{2}+\left(\gamma^{3}\right)^{2}=4 \times \mathbf{1}$
$\gamma_{\mu} \gamma^{\nu} \gamma^{\mu}=\gamma_{\mu}\left(\left\{\gamma^{\nu}, \gamma^{\mu}\right\}-\gamma^{\mu} \gamma^{\nu}\right)=2 \eta^{\mu \nu} \gamma_{\mu}-\gamma_{\mu} \gamma^{\mu} \gamma^{\nu}=-2 \gamma^{\nu}$, by using the previous result.
$\gamma_{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\mu}=\gamma_{\mu} \gamma^{\nu}\left(\left\{\gamma^{\rho}, \gamma^{\mu}\right\}-\gamma^{\mu} \gamma^{\rho}\right)=2 \eta^{\rho \mu} \gamma_{\mu} \gamma^{\nu}-\gamma_{\mu} \gamma^{\nu} \gamma^{\mu} \gamma^{\rho}=2 \gamma^{\rho} \gamma^{\nu}+2 \gamma^{\nu} \gamma^{\rho}=2\left\{\gamma^{\rho}, \gamma^{\nu}\right\}=4 \eta^{\rho \nu} \times \mathbf{1}$
$\gamma_{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\mu}=\gamma_{\mu} \gamma^{\nu} \gamma^{\rho}\left(\left\{\gamma^{\sigma}, \gamma^{\mu}\right\}-\gamma^{\mu} \gamma^{\sigma}\right)=2 \eta^{\sigma \mu} \gamma_{\mu} \gamma^{\nu} \gamma^{\rho}-4 \eta^{\rho \nu} \gamma^{\sigma}=2 \gamma^{\sigma}\left(\gamma^{\nu} \gamma^{\rho}-\left\{\gamma^{\nu}, \gamma^{\rho}\right\}\right)=-2 \gamma^{\sigma} \gamma^{\rho} \gamma^{\nu}$ $\operatorname{tr} \gamma_{\mu} \gamma_{\nu}=\frac{1}{2} \operatorname{tr}\left(\gamma_{\mu} \gamma_{\nu}+\gamma_{\nu} \gamma_{\mu}\right)=\eta_{\mu \nu} \operatorname{tr} \mathbf{1}=4 \eta_{\mu \nu}$
In the following proof we move γ_{μ} to the right by using the Clifford algebra :

$$
\begin{aligned}
\operatorname{tr} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} & =2 \eta_{\mu \nu} \operatorname{tr} \gamma_{\rho} \gamma_{\sigma}-\operatorname{tr} \gamma_{\nu} \gamma_{\mu} \gamma_{\rho} \gamma_{\sigma} \\
& =2 \eta_{\mu \nu} \operatorname{tr} \gamma_{\rho} \gamma_{\sigma}-2 \eta_{\mu \rho} \operatorname{tr} \gamma_{\nu} \gamma_{\sigma}+\operatorname{tr} \gamma_{\nu} \gamma_{\rho} \gamma_{\mu} \gamma_{\sigma} \\
& =2 \eta_{\mu \nu} \operatorname{tr} \gamma_{\rho} \gamma_{\sigma}-2 \eta_{\mu \rho} \operatorname{tr} \gamma_{\nu} \gamma_{\sigma}+2 \eta_{\mu \sigma} \operatorname{tr} \gamma_{\nu} \gamma_{\rho}-\operatorname{tr} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{\mu}
\end{aligned}
$$

By the cyclicity of the trace the last term on the right is equal to the term on the left hand side, hence $\operatorname{tr} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma}=\frac{1}{2}\left(2 \eta_{\mu \nu} \operatorname{tr} \gamma_{\rho} \gamma_{\sigma}-2 \eta_{\mu \rho} \operatorname{tr} \gamma_{\nu} \gamma_{\sigma}+2 \eta_{\mu \sigma} \operatorname{tr} \gamma_{\nu} \gamma_{\rho}\right)=4\left(\eta_{\mu \nu} \eta_{\rho \sigma}-\eta_{\mu \rho} \eta_{\nu \sigma}+\eta_{\mu \sigma} \eta_{\nu \rho}\right)$
We recall that $\gamma_{5}=-i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ is a matrix that anticommutes with the four γ^{μ} 's, and that square to one. Thus

$$
\operatorname{tr} \gamma_{\mu_{1}} \ldots \gamma_{\mu_{2 n+1}}=\operatorname{tr} \gamma_{5} \gamma_{5} \gamma_{\mu_{1}} \ldots \gamma_{\mu_{2 n+1}}=\left\{\begin{array}{l}
\operatorname{tr} \gamma_{5} \gamma_{\mu_{1}} \ldots \gamma_{\mu_{2 n+1}} \gamma_{5} \\
-\operatorname{tr} \gamma_{5} \gamma_{\mu_{1}} \ldots \gamma_{\mu_{2 n+1}} \gamma_{5}
\end{array}\right.
$$

where in the first line we used the cyclicity of the trace, and in the second line the fact that γ_{5} anticommutes with the product of an odd number of γ^{μ} 's. This implies that $\operatorname{tr} \gamma_{\mu_{1}} \ldots \gamma_{\mu_{2 n+1}}=0$.

4 Energy levels of a relativistic charged spin-0 particle in a constant magnetic field

a) With $\vec{A}=A_{z}(x, y, z) \vec{e}_{z}$ the associated magnetic field is $\vec{B}=\vec{\nabla} \wedge \vec{A}=\left(\partial_{y} A_{z}\right) \vec{e}_{x}-\left(\partial_{x} A_{z}\right) \vec{e}_{y}$, we can thus take $A_{z}=-B x$ to have $\vec{B}=B \vec{e}_{y}$. The Klein-Gordon equation in presence of an electromagnetic potential is

$$
\left[-\left(\partial_{\mu}-i q A_{\mu}\right)\left(\partial^{\mu}-i q A^{\mu}\right)+m^{2}\right] \phi=0
$$

With the above choice for \vec{A} one obtains

$$
\left[\frac{\partial^{2}}{\partial t^{2}}-\Delta+m^{2}+q^{2} B^{2} x^{2}-2 i q B x \frac{\partial}{\partial z}\right] \phi(t, \vec{x})=0
$$

with Δ the spatial Laplacian.
b) We shall look for a stationary solution of the form $\phi(t, \vec{x})=e^{-i E t} \varphi(\vec{x})$, where $\varphi(\vec{x})$ obeys

$$
\left[-E^{2}-\Delta+m^{2}+q^{2} B^{2} x^{2}-2 i q B x \frac{\partial}{\partial z}\right] \varphi(\vec{x})=0
$$

Denoting the momentum operator $\vec{P}=-i \vec{\nabla}$ this can be rewritten as an eigenvalue problem,

$$
\left[P_{x}^{2}+P_{y}^{2}+\left(P_{z}+q B X\right)^{2}\right] \varphi=\left(E^{2}-m^{2}\right) \varphi
$$

As the operator in the left hand side commutes with P_{y} and P_{z} we can look for a common eigenvector, i.e. take $\varphi(x, y, z)=e^{i k_{y} y+i k_{z} z} \chi(x)$, with

$$
\left[P_{x}^{2}+(q B)^{2}\left(X+\frac{k_{z}}{q B}\right)^{2}\right] \chi=\left(E^{2}-m^{2}-k_{y}^{2}\right) \chi
$$

Dividing by $2 m$ we obtain

$$
\left[\frac{P_{x}^{2}}{2 m}+\frac{1}{2} m\left(\frac{q B}{m}\right)^{2}\left(X+\frac{k_{z}}{q B}\right)^{2}\right] \chi=\frac{E^{2}-m^{2}-k_{y}^{2}}{2 m} \chi .
$$

One recognizes a Schrödinger equation for an harmonic oscillator of mass m and frequency $\omega=q B / m$, the location of the center $x_{0}=-k_{z} /(q B)$ of the harmonic well being fixed by k_{z}. The eigenvalues of this problem are $\omega(n+(1 / 2))$, with $n=0,1, \ldots$, hence

$$
E\left(n, k_{y}\right)=\sqrt{m^{2}+k_{y}^{2}+q B(2 n+1)}, \quad \varphi(\vec{x})=e^{i k_{y} y+i k_{z} z} e^{-\frac{q B}{2}\left(x+\left(k_{z} / q B\right)\right)^{2}} H_{n}\left(\sqrt{q B}\left(x+\left(k_{z} / q B\right)\right)\right),
$$

with H_{n} the Hermite polynomials. For each value of n and k_{y} there is an infinite degeneracy due to the free choice of k_{z}.
c) Expanding in the large m limit the above expression yields

$$
E\left(n, k_{y}\right)=m+\left[\frac{k_{y}^{2}}{2 m}+\frac{q B}{m}\left(n+\frac{1}{2}\right)\right]-\frac{1}{8 m^{3}}\left(k_{y}^{2}+2 q B\left(n+\frac{1}{2}\right)\right)^{2}+\ldots
$$

The first term is the rest mass energy, the square bracket is the non-relativistic result that would have been obtained with the Schrödinger equation, the last term is the first relativistic correction.
d) The magnetic field is invariant under the transformation $\vec{A} \rightarrow \vec{A}+\vec{\nabla} f$, for an arbitrary function $f(\vec{x})$. The Klein-Gordon equation is invariant if one performs simultaneously the gauge transformation $\phi \rightarrow \phi e^{i q f}$, hence a different choice of vector potential would only add a (space-dependent) phase to the wavefunctions, but does not change the energies of the Landau levels.

5 Weakly relativistic limit of the Dirac equation and spin-orbit coupling

a) In the Dirac representation

$$
\gamma^{0}=-i\left(\begin{array}{cc}
\mathrm{Id} & 0 \\
0 & -\mathrm{Id}
\end{array}\right), \quad \gamma^{j}=-i\left(\begin{array}{cc}
0 & \sigma_{j} \\
-\sigma_{j} & 0
\end{array}\right) .
$$

The Dirac equation in presence of an electrostatic potential $V(\vec{x})$ reads

$$
\left(\gamma^{0}\left(\frac{\partial}{\partial t}+i q V(\vec{x})\right)+\vec{\gamma} \cdot \vec{\nabla}+m\right) \psi(t, \vec{x})=0 .
$$

For a wave-function of the form proposed in the text, and using the Dirac representation of the gamma matrices, one obtains the following coupled equations for φ and χ :

$$
\left\{\begin{array}{l}
(-\epsilon+q V(\vec{x}) \varphi(\vec{x})-i(\vec{\sigma} \cdot \vec{\nabla}) \chi(\vec{x})=0 \\
(2 m+\epsilon-q V(\vec{x})) \chi(\vec{x})+i(\vec{\sigma} \cdot \vec{\nabla}) \varphi(\vec{x})=0
\end{array}\right.
$$

b) With the second equation one gets χ in terms of φ as

$$
\chi(\vec{x})=\frac{1}{2 m+\epsilon-q V(\vec{x})}(-i \vec{\sigma} \cdot \vec{\nabla}) \varphi(\vec{x}) .
$$

Reinserting in the first equation yields

$$
\epsilon \varphi(\vec{x})=\left[q V(\vec{x})+(-i \vec{\sigma} \cdot \vec{\nabla}) \frac{1}{2 m+\epsilon-q V(\vec{x})}(-i \vec{\sigma} \cdot \vec{\nabla})\right] \varphi(\vec{x}),
$$

i.e. the form of the text with

$$
f(\vec{x})=q V(\vec{x}), \quad g(\vec{x})=\frac{1}{2 m+\epsilon-q V(\vec{x})} .
$$

c) Expanding at large m one has

$$
g(\vec{x})=\frac{1}{2 m} \frac{1}{1+\frac{\epsilon-q V(\vec{x})}{2 m}}=\frac{1}{2 m}-\frac{\epsilon-q V(\vec{x})}{4 m^{2}}+O\left(\frac{\epsilon^{2}}{m^{3}}\right)
$$

which yields equation (15) of the text.
d) $(\vec{\sigma} \cdot \vec{P})^{2}=\sigma_{i} \sigma_{j} P_{i} P_{j}=\left(\delta_{i j}+i \epsilon_{i j k} \sigma_{k}\right) P_{i} P_{j}=\vec{P}^{2}$ as $P_{i} P_{j}$ is symmetric and $\epsilon_{i j k}$ antisymmetric under the exchange $i \leftrightarrow j$. Moreover

$$
[\vec{\sigma} \cdot \vec{P}, \epsilon-q V(\vec{x})]=-q \vec{\sigma} \cdot[\vec{P}, V(\vec{x})]=i q \vec{\sigma} \cdot(\vec{\nabla} V) .
$$

Hence

$$
\begin{aligned}
H_{P} & =\frac{\vec{P}^{2}}{2 m}+q V(\vec{x})-\frac{1}{4 m^{2}}[(\vec{\sigma} \cdot \vec{P})(\vec{\sigma} \cdot \vec{P})(\epsilon-q V(\vec{x}))-(\vec{\sigma} \cdot \vec{P})[\vec{\sigma} \cdot \vec{P}, \epsilon-q V(\vec{x})]] \\
& =\frac{\vec{P}^{2}}{2 m}+q V(\vec{x})-\frac{1}{4 m^{2}} \vec{P}^{2}(\epsilon-q V(\vec{x}))+\frac{i q}{4 m^{2}}(\vec{\sigma} \cdot \vec{P})(\vec{\sigma} \cdot(\vec{\nabla} V))
\end{aligned}
$$

The last term is the spin-orbit coupling Hamiltonian ; thanks to the properties of multiplication of the Pauli matrices one has

$$
(\vec{\sigma} \cdot \vec{P})(\vec{\sigma} \cdot(\vec{\nabla} V))=\vec{P} \cdot(\vec{\nabla} V)+i \vec{\sigma} \cdot(\vec{P} \wedge(\vec{\nabla} V))
$$

For a spherically symmetric potential $\vec{\nabla} V=\vec{r} \frac{V^{\prime}(r)}{r}$, which explains the second term in (17) with $b(r)=q V^{\prime}(r) /(4 r)$. Moreover one can check (by applying these operators to arbitrary test functions) that for any spherically symmetric function $f(r)$ one has $\vec{P} \wedge f(r) \vec{r}=f(r) \vec{r} \wedge \vec{P}=f(r) \vec{L}$, hence the first term in (17) with $a(r)=-q V^{\prime}(r) /(2 r)$, the spin operator being $\vec{S}=\vec{\sigma} / 2$.
e) At the lowest order the wave function φ obeys $(\epsilon-q V) \varphi=\frac{\vec{P}^{2}}{2 m} \varphi$, one can thus replace in the correction term of H_{P}

$$
-\frac{1}{4 m^{2}} \vec{P}^{2}(\epsilon-q V(\vec{x}))=-\frac{\left(\vec{P}^{2}\right)^{2}}{8 m^{3}} .
$$

6 The axial current

a) As γ_{5} anticommutes with the γ^{μ} 's, $\left(\gamma_{5}\right)^{p} \gamma^{\mu}=(-1)^{p} \gamma^{\mu}\left(\gamma_{5}\right)^{p}$ for integer values of p; expanding the exponential in series then shows the identity $e^{i \epsilon \gamma_{5}} \gamma^{\mu}=\gamma^{\mu} e^{-i \epsilon \gamma_{5}}$. As γ_{5} is Hermitian,

$$
\bar{\psi}(x) \rightarrow\left(e^{i \epsilon \gamma_{5}} \psi\right)^{\dagger} i \gamma^{0}=\psi^{\dagger} e^{-i \epsilon \gamma_{5}} i \gamma^{0}=\psi^{\dagger} i \gamma^{0} e^{i \epsilon \gamma_{5}}=\bar{\psi}(x) e^{i \epsilon \gamma_{5}}
$$

b) Indeed, $\bar{\psi} \psi$ is not invariant under this transformation, whereas $\bar{\psi} \gamma^{\mu} \psi$ is :

$$
\begin{aligned}
& \bar{\psi} \psi \rightarrow \bar{\psi} e^{2 i \epsilon \gamma_{5}} \psi \neq \bar{\psi} \psi \\
& \bar{\psi} \gamma^{\mu} \psi \rightarrow \bar{\psi} e^{i \epsilon \gamma_{5}} \gamma^{\mu} e^{i \epsilon \gamma_{5}} \psi=\bar{\psi} \gamma^{\mu} e^{-i \epsilon \gamma_{5}} e^{i \epsilon \gamma_{5}} \psi=\bar{\psi} \gamma^{\mu} \psi
\end{aligned}
$$

Consider the variation of the massless action under an infinitesimal transformation with $\delta \psi=i \epsilon \gamma_{5} \psi$, $\delta \bar{\psi}=i \epsilon \bar{\psi} \gamma_{5}$, where ϵ is space dependent :

$$
\delta S=\int \mathrm{d}^{4} x\left[\bar{\psi}\left(-\gamma^{\mu} \partial_{\mu}+i q \gamma^{\mu} A_{\mu}\right) i \epsilon \gamma_{5} \psi+i \epsilon \bar{\psi} \gamma_{5}\left(-\gamma^{\mu} \partial_{\mu}+i q \gamma^{\mu} A_{\mu}\right) \psi\right]=\int \mathrm{d}^{4} x\left[-i\left(\partial_{\mu} \epsilon \bar{\psi} \gamma^{\mu} \gamma_{5} \psi\right]\right.
$$

the other terms vanishing because γ_{5} anticommutes with the γ^{μ} 's. Integrating by part we see that when the Euler-Lagrange equations are verified $\partial_{\mu} j_{5}^{\mu}=0$, i.e. the axial current is conserved for a massless Dirac field.
c) The Dirac equations for ψ and $\bar{\psi}$ are

$$
(\not \partial-i q A+m) \psi=0, \quad \bar{\psi}(\overleftarrow{\not \partial}+i q A-m)=0
$$

where the derivatives in $\overleftarrow{\not \partial}$ acts on the left. Hence

$$
\begin{aligned}
\partial_{\mu} j_{5}^{\mu} & =i \bar{\psi} \gamma_{5} \gamma^{\mu} \partial_{\mu} \psi+i\left(\partial_{\mu} \bar{\psi}\right) \gamma_{5} \gamma^{\mu} \psi=i \bar{\psi} \gamma_{5} \not \partial \psi-i \bar{\psi} \not{\not \partial} \gamma_{5} \psi=i \bar{\psi}\left[\gamma_{5}(i q A-m)-(-i q A+m) \gamma_{5}\right] \psi \\
& =-2 i m \bar{\psi} \gamma_{5} \psi
\end{aligned}
$$

as $A \gamma_{5}=-\gamma_{5} A$. We find again that j_{5}^{μ} is conserved if and only if $m=0$.
d) Taking the complex conjugate of the μ-th component of j_{5} we obtain

$$
\left(j_{5}^{\mu}\right)^{*}=-i\left(\psi^{\dagger} i \gamma^{0} \gamma_{5} \gamma^{\mu} \psi\right)^{\dagger}=i \psi^{\dagger}\left(\gamma^{\mu}\right)^{\dagger}\left(\gamma_{5}\right)^{\dagger} i\left(\gamma^{0}\right)^{\dagger} \psi=i \psi^{\dagger} i \gamma^{0} \gamma^{\mu} \gamma^{0} \gamma_{5}\left(-\gamma^{0}\right) \psi=j_{5}^{\mu}
$$

which is thus real. Under a Lorentz transformation $x \rightarrow x^{\prime}=\Lambda x$ one has

$$
\left\{\begin{array}{l}
\psi^{\prime}\left(x^{\prime}\right)=D(\Lambda) \psi(x) \\
\bar{\psi}^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) D(\Lambda)^{-1}
\end{array} \quad \Rightarrow \quad\left(j_{5}^{\mu}\right)^{\prime}\left(x^{\prime}\right)=i \bar{\psi}(x) D(\Lambda)^{-1} \gamma_{5} \gamma^{\mu} D(\Lambda) \psi(x)\right.
$$

where $D(\Lambda)=\exp \left[\frac{1}{4} \omega_{\mu \nu} \gamma^{\mu \nu}\right]$ expands into terms that contain an even number of γ^{μ} matrices, hence commutes with γ_{5}. As $D(\Lambda)^{-1} \gamma^{\mu} D(\Lambda)=\Lambda^{\mu}{ }_{\nu} \gamma^{\nu}$, one has $\left(j_{5}^{\mu}\right)^{\prime}\left(x^{\prime}\right)=\Lambda^{\mu}{ }_{\nu} j_{5}^{\nu}(x)$, i.e. j_{5} transforms as a four-vector under Lorentz transformations. Under the parity transformation,

$$
\left\{\begin{array}{l}
\psi^{\prime}\left(x^{\prime}\right)=i \gamma^{0} \psi(x) \\
\bar{\psi}^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) i \gamma^{0}
\end{array} \quad \Rightarrow \quad\left(j_{5}^{\mu}\right)^{\prime}\left(x^{\prime}\right)=i \bar{\psi}(x) i \gamma^{0} \gamma_{5} \gamma^{\mu} i \gamma^{0} \psi(x)=i \bar{\psi}(x) \gamma_{5} \gamma^{0} \gamma^{\mu} \gamma^{0} \psi(x)\right.
$$

As

$$
\gamma^{0} \gamma^{\mu} \gamma^{0}= \begin{cases}-\gamma^{\mu} & \text { if } \mu=0 \tag{1}\\ +\gamma^{\mu} & \text { if } \mu=1,2,3\end{cases}
$$

one obtains that j_{5} is a pseudo-vector.

