
ICFP Masters program
École Normale Supérieure

M2 (Fall/Winter 2017)

Final Exam: Quantum Field Theory

This exam is closed book, closed notes. It consists of six pages. Useful formulae are collected in
appendix A and the Feynman rules of QED are summarized in appendix B. It is essential that you

exhibit your calculations with all required intermediate steps. You have 3 hours. Good luck!

1 The g-factor predicted by the Dirac equation

From non-relativistic quantum mechanics, we know that a particle of spin ~S couples to a magnetic
field ~B as

H =
~p · ~p
2m

+
e

2m
g ~B · ~S . (1)

The coupling g determines the magnetic dipole moment of the particle. The Dirac equation predicts
a value for g, the so-called g-factor of the electron, which you will derive in this problem.

1. Starting from the Dirac equation for a spinor ψ of charge −e, derive

( /D
2
+m2)ψ = 0 . (2)

2. Derive
/D
2
= DµD

µ +
e

2
Fµνσ

µν , where σµν =
i

2
[γµ, γν ] . (3)

The term proportional to σµν shows that spinors couple differently to the electromagnetic field than
scalars do. You will next compute the value that the Dirac equation predicts for the g-factor of the
electron.

3. Express Fµνσ
µν in terms of the three vectors ~σ, ~E, and ~B. Use the Weyl representation of the

γ matrices.

4. As a warm-up for the final step in this problem, derive the standard expression for non-relativistic
kinetic energy from the mass-shell relation p2 = m2.

5. Now introduce the variables pµA = pµ − eAµ, and identify H = p0A. By invoking (3) and passing
to momentum space, obtain the value of g for an electron as implied by this analysis. Make sure
to identify the operator ~S correctly in terms of the Pauli matrices ~σ!
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2 The g factor from the electron vertex

Note: for this problem, we will not need renormalized perturbation theory. We will thus omit the
subscript R from both mR and eR.

Consider the electron vertex at tree level

iMµ
0 =

p

q2q1

= −ieū(q2)γµu(q1) . (4)

Note that the photon leg is amputated, and that the electron legs are on-shell.

1. Show that
ū(q2)γ

µu(q1) = ū(q2)

(
qµ2 + qµ1
2m

+ iσµν
(q2)ν − (q1)ν

2m

)
u(q1) , (5)

where σµν = i
2 [γ

µ, γν ]. This is called the Gordon identity.

Next consider the loop corrected electron vertex

iMµ =

p

q2q1

= −ie ū(q2)Γµu(q1) , (6)

where iMµ is to equal the sum over all Feynman diagrams with the indicated external legs, with the
free photon propagator amputated.

2. Without assuming anything about the polarization tensors u(q1) and ū(q2), and without imposing
momentum conservation, what is the most general form that Γµ can take, based solely on Lorentz
invariance?

3. Now assume that the electron is on-shell, and that momentum conservation is imposed at the
vertex. By imposing the Ward identity, show that the most general form of Mµ is

iMµ = (−ie)ū(q2)
[
F1

(
p2
)
γµ +

iσµν

2m
pνF2

(
p2
)]
u(q1) . (7)

Carefully justify each step!

4. F1 and F2 are the form factors of the electron vertex. Determine their values at tree level.

The g-factor is corrected beyond tree level as

g = 2 + 2F2(0) . (8)
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3 Loop correction to the g factor

You will now compute the loop correction

iMµ
2 =

p

p+ kk

k − q1 q2q1

(9)

to the g factor.

1. Read off the expression for the Feynman diagram (9) in Feynman gauge (i.e. at ξ = 1), with the
same prescription as in (4) for the external legs: the electrons are on-shell, p = q2 − q1, and the
external photon propagator is amputated.

2. Use Feynman parametrization to put the denominator of your expression in the form (k̃−∆+iε)3,
with the only momentum dependence of ∆ being on p. Give explicitly the expression for k̃ and
for ∆.

3. Your expression should now be in the form

iMµ
2 = −2e3

∫ 1

0
dx dy dz δ(x+ y + z − 1)

∫
d4k

(2π)4
Nµ

(k̃ −∆+ iε)3
. (10)

Show that the contribution Nµ evaluates to

Nµ = 2ū(q2)
[
−/kγµ/p− /kγµ/k + 2m(2kµ + pµ)−m2γµ

]
u(q1) . (11)

This computation involves roughly one page of algebra. Don’t get bogged down here! If you are
having trouble reproducing (11), you can return to this at the end.

4. Upon substituting k̃ 7→ k and further algebra, this expression can be replaced by

−1

2
Nµ =

[
−1

2
k2 + (1− x)(1− y)p2 + (1− 4z + z2)m2

]
ū(q2)γ

µu(q1) (12)

+imz(1− z) pν ū(q2)σ
µνu(q1) +m(z − 2)(x− y)pµ ū(q2)u(q1) .

You are NOT asked to derive this result.
To arrive at (12), one must use that under the d4k integral, the substitution

kµkν 7→ 1

4
gµνk2 (13)

is possible. Justify this substitution.

5. Show that Mµ
2 satisfies the Ward identity, i.e. pµMµ

2 = 0.

6. Comparing to (7), extract the expression for F2(p
2). Determine the superficial degree of diver-

gence of the d4k integral. Then evaluate the d4k integral explicitly. Does the prediction from
studying the superficial degree of divergence hold true?

7. Using (8), determine the order α correction to g (recall that α = e2

4π ).
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4 Vertex renormalization

You will now compute the renormalization of the electron vertex in renormalized perturbation theory,

−ieRū(q2)Γµ(p)u(q1) =

p

q2q1

(14)

Take the RHS of (14) to equal the sum of all Feynman diagrams in renormalized perturbation theory
with the given external legs such that

• the free photon propagator is amputated,

• it is not possible to cut the diagram into two disconnected pieces, one of which is a contribution
to the electron 2-point function, upon cutting a single line.

1. Draw all diagrams that contribute to Γµ at order α.

2. Γµ(p) takes the form
Γµ(p) = F1(p

2)γµ +
iσµν

2mR
pνF2(p

2) . (15)

Find the expression for F1(p
2) in Feynman gauge (i.e. at ξ = 1) as an integral over the internal

momentum and Feynman parameters, making maximal use of your results from problem 3.

3. Including the tree level results, F1(p
2) takes the form

F1(p
2) = 1 + δ1 + f(p2) +O(e4R) . (16)

To evaluate this result in dimensional regularization, we need to revisit the computation of iMµ
2 ,

and perform the manipulations involving the γ matrices in d dimensions. The result (which you
do not need to derive) is

f(p2) = −2ie2Rµ
4−d

∫
ddk

(2π)d

∫
dx dy dz δ(x+ y + z − 1) (17)

(d−2)2

d k2 − [(d− 2)xy + 2z] p2 +
[
2 + 2z2 − d(1− z)2

]
m2

R

(k2 −∆+ iε)3
, (18)

with
∆ = (1− z)2m2

R − xyp2 + zm2
γ . (19)

The infrared divergence of the diagram has been regulated by introducing a photon mass mγ .
Evaluate f(p2) via dimensional regularization. You can simplify your calculation by performing
an analysis of superficial degrees of divergence to identify the UV divergent contributions to the
integral. You are only required to perform those integrals over Feynman parameters which are
straightforward.

4. Renormalize the electron vertex by imposing

Γµ(0) = γµ . (20)

What is the value of δ1 in this renormalization scheme to order α? You can express your result
in terms of an integral over one Feynman parameter.
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5 The vertex correction in terms of Green’s functions

1. Describe succinctly the Feynman diagrams that contribute to the time-ordered product∫
d4x d4y d4z eiq1xe−iq2xeipz〈Ω|T{ψ(x)ψ̄(y)Aµ(z)}|Ω〉 . (21)

2. Explain, again at the level of Feynman diagrams, how the 3-point function (21) differs from the
3-point function ∫

d4x d4y d4z eiq1xe−iq2xeipz〈Ω|T{ψ(x)ψ̄(y)Jµ(z)}|Ω〉 , (22)

where Jµ(z) = ψ̄(z)γµψ(z) is the electromagnetic current.

3. Relate (22) to the electromagnetic vertex Γµ(p) which is defined as the sum of all Feynman
diagrams with one ingoing electron leg of momentum q1, one outgoing electron leg of momentum
q2, one photon leg of momentum p, such that

• the free photon propagator is amputated,
• it is not possible to cut the diagram into two disconnected pieces, one of which is a contri-

bution to the electron 2-point function, upon cutting a single line.

A Useful formulae

The fine structure constant
α =

e2

4π
. (23)

Dirac equation for a charge Q = −1 fermion

(i /D −m)ψ = (i/∂ − e /A−m)ψ = 0 . (24)

Electron and positron polarization tensor

(/p−m)u(p) = 0 , (/p+m)v(p) = 0 . (25)

Weyl representation of γ matrices

γµ =

(
σµ

σ̄µ

)
(26)

where
σµ = (1, ~σ) , σ̄µ = (1,−~σ) , (27)

and ~σ = (σ1, σ2, σ3) are the Pauli matrices, which satisfy

[σi, σj ] = 2iεijkσk . (28)
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Feynman parameters
1

AB
=

∫ 1

0
dxdyδ(x+ y − 1)

1

[xA+ yB]2
(29)

1

ABC
=

∫ 1

0
dxdydzδ(x+ y + z − 1)

2

[xA+ yB + zC]3
(30)

Dimensional regularization∫
ddk

(2π)d
k2a

(k2 −∆)b
= i(−1)a−b 1

(4π)d/2
1

∆b−a− d
2

Γ(a+ d
2)Γ(b− a− d

2)

Γ(b)Γ(d2)
(31)

Γ(ε) =
1

ε
− γE +O(ε) (32)

B Feynman rules for renormalized perturbation theory of QED

p
=

i(/p+mR)

p2 −m2
R + iε

p
=

−i
p2 + iε

[
gµν − (1− ξ)

pµpν

p2

]

= −ieRγµ

= i(/pδ2 − (δm + δ2)mR)

= −iδ3p2gµν (in Feynman gauge)

= −ieRδ1γµ
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