
ICFP M2 - Statistical physics 2 – Exam

Guilhem Semerjian

March 30th, 2018

The exam is made of two parts. The first one is a series of short independent questions to check your
knowledge and understanding of the contents of some of the lectures, the second one is a longer problem with
partially independent subparts.

No document, calculator nor phone is allowed.

You can write your answers in English or French.

1 Questions on the lectures

1. Consider a random variable X , Gaussian distributed with average 0 and variance E[X2] = b. We use X

to form another random variable, ZN = eNa+
√
NX , where a is a fixed constant and N mimicks the size of

a system. Compute
1

N
lnE[ZN ] and

1

N
E[lnZN ] . (1)

Give a name to these two ways of taking the average, and comment on their possible difference.

2. A sequence of 1000 symbolsA, B, C produced by a random source with probabilities pA = 1
2 , pB = pC = 1

4 ,
is compressed into a string of 0 and 1’s. How long do you expect the compressed string to be if you use
an efficient algorithm? Propose an encoding of A, B, C into binary symbols that achieve this optimal
compression rate.

3. What is the minimal number of colors necessary to color the vertices of the graph drawn below without
creating monochromatic edges ?

Explain why, and give an example of solution.

4. Consider a positive random variable X with distribution function FX(x) = P[X ≤ x] = 1−e−xβ

for x ≥ 0,
with β > 0 a fixed exponent, and X1, X2,. . .independent identically distributed random variables with the
same law as X . We denote

M̂n =
max(X1, . . . , Xn)− an

bn
(2)

the rescaled maximum of n such random variables. Write down the distribution function F
M̂n

in terms of

FX . How should one choose an and bn for M̂n to converge in distribution as n → ∞ ? How is called the
limit distribution of M̂n ?
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2 The denaturation transition of DNA

The DNA is a polymeric molecule made of two complementary strands that, at ambient temperature, are tied
together. Upon heating it undergoes a so-called denaturation transition (that can be observed experimentally
with UV spectroscopy techniques) : the thermal excitations overcome the binding energy of complementary
bases, and some of them detach from each other ; the portions of the molecule which are not tied together can
fluctuate in space, which increases its entropy.

We will study this phenomenon with a simplified modelization, due to Poland and Scheraga, in which one
describes a microscopic configuration of the molecule by specifying which complementary bases of the molecule
are in contact and which are detached. In a molecule of length (total number of bases) L, the configuration
is thus specified by k, the number of bases in contact, and 1 ≤ ℓ1 < ℓ2 < · · · < ℓk ≤ L the position of
these bases along the chain. For instance the configuration on the figure below corresponds to L = 11, k = 7,
(ℓ1, . . . , ℓ7) = (1, 2, 3, 4, 8, 9, 11).

For simplicity we assume that the first and last pair of bases are always attached, i.e. the boundary conditions
are such that k ≥ 2, ℓ1 = 1, ℓk = L.

Two bases in contact at position ℓ contribute to the energy of the molecule by an additive term εℓ ; we
assume εℓ ≤ 0, because the pairing interaction is attractive. The entropic effect of the detached loop between
two contacts at positions ℓi and ℓi+1 is modelized by a factor A(ℓi+1 − ℓi), with A(ℓ) a positive function of the
length ℓ of the detached segment. The probability of a configuration is thus

1

ZL(β, ε)
A(ℓ2 − ℓ1)A(ℓ3 − ℓ2) . . . A(ℓk − ℓk−1)e

−β(εℓ1+εℓ2+···+εℓk ) , (3)

where the partition function normalizing the probability is

ZL(β, ε) =
L∑

k=2

∑

1<ℓ2<···<ℓk−1<L

A(ℓ2 − ℓ1)A(ℓ3 − ℓ2) . . . A(ℓk − ℓk−1)e
−β(εℓ1+εℓ2+···+εℓk ) (4)

with the boundary conditions ℓ1 = 1, ℓk = L, and ε = (ε1, . . . , εL) denoting the binding energies along the
chain.

We shall assume that A(ℓ) > 0 for all ℓ ≥ 1, that it has the following behavior at large distances :

A(ℓ) ∼ A0
Ωℓ

ℓc
, (5)

with A0 > 0, Ω > 1 and c > 0 some constants, and that at the minimal distance 0 < A(1) < Ω.

2.1 The homogeneous case

In a real DNA molecule the binding energies of the complementary bases A-T and C-G are not equal, hence
ε is a quenched disorder that depends on the genomic sequence. We will first study an homogeneous molecule
with εℓ = ε all along the chain, and denote Zh

L(β, ε) the partition function in this case. We recall that ε < 0 due
to the attractive interaction between the two strands. Our goal is to compute and characterize the free-energy
density

fh(β, ε) = −
1

β
lim

L→∞

1

L
lnZh

L(β, ε) . (6)

1. Before computing fh(β, ε) we shall derive simple bounds on it to gain some intuition on the physics of
this model.

(a) Compute the contribution to Zh
L(β, ε) of the configuration where all the bases are in contact. Deduce

from it an upperbound to fh(β, ε).

(b) Do the same with the configuration where all the bases (except those in ℓ = 1 and ℓ = L) are
detached.

(c) Draw these two bounds as a function of the temperature T = 1/β. Comment on the low and high
temperature limits.
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2. Give an interpretation of ∂
∂ε

lnZh
L(β, ε), and justify that

θ(β, ε) =
∂

∂ε
fh(β, ε) (7)

plays the role of an order parameter for the denaturation transition.

3. To compute the free-energy at all temperatures it is easier to use the grand canonical formalism in which
the length of the molecules is allowed to fluctuate, with a conjugated control parameter x ≥ 0 called
fugacity. The grand partition function Zh(x, β, ε) is defined as

Zh(x, β, ε) =

∞∑

L=2

Zh
L(β, ε)x

L , (8)

and the critical fugacity x∗(β, ε) as

x∗(β, ε) = sup { x : Zh(x, β, ε) < ∞} . (9)

(a) Express the free-energy density fh(β, ε) in terms of the critical fugacity x∗(β, ε).

(b) Compute Zh(x, β, ε) in terms of the generating function associated to A(ℓ), i.e.

Â(x) =

∞∑

ℓ=1

A(ℓ)xℓ , (10)

and conclude that

fh(β, ε) =
1

β
ln
(
sup { x : e−βεÂ(x) < 1}

)
. (11)

4. Study carefully the function Â(x) for x ≥ 0, recalling the assumptions on A(ℓ) made in equation (5). You
should in particular consider the following questions :

(a) What is the value of Â(0) ?

(b) How does Â(x) behaves for x → 0 ?

(c) Is the function Â(x) monotonous for x ≥ 0 ?

(d) What is the radius of convergence R of the series (10), such that Â(x) is finite for 0 ≤ x < R, infinite
for x > R ?

(e) Is Â(R) finite ? (The answer to this question depends on c)

(f) Is Â′(R) finite ? (idem)

Your answers to the last two questions should lead you to distinguish three regimes, c < c1, c1 < c < c2,
and c > c2 ; specify the values of c1 and c2. Draw three sketches of Â(x), one for each of these regimes.

5. Consider first the case c < c1, and show that there is no phase transition in this case, in the sense that
fh(β, ε) has no singularity as a function of the temperature.

6. We shall now consider the case c > c1, and make the additional assumption Â(R) < 1 (view Â(R) as a
known number, do not try to compute it). Show the existence of a phase transition at a temperature Tc

that you will specify, and give the value of fh(β, ε) in the high temperature phase. What is the value of
the order parameter θ(β, ε) in this phase ? What are the typical configurations of the molecule ?

7. We still assume c > c1 and Â(R) < 1, and consider now the low temperature phase T < Tc, and in
particular the limit T → T−

c .

(a) Express fh(β, ε) in the low temperature phase in terms of the function B reciprocal of Â, i.e. such

that B(Â(x)) = Â(B(x)) = x.

(b) Draw the shape of B in the case c > c2, deduce the qualitative behavior of the free-energy for
T → T−

c , and conclude that the transition is first order in this case.

(c) Consider finally the situation c1 < c < c2 ; proove (or admit) that

Â(x) ∼ Â(R)− C (R− x)c−1 (12)

in the limit x → R−, where C is a strictly positive constant. Deduce the behavior of B close to Â(R),
and conclude that the transition is now of second order, with a singular behavior of fh of the form
(Tc − T )2−α in the limit T → T−

c , with an exponent

α =
2c− 3

c− 1
. (13)

8. The conclusions of the previous questions seem at first sight contradictory with the well-known statement
according to which there cannot be a finite temperature phase transition in one dimension. Why is this
situation only apparently paradoxical ?
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2.2 The disordered case

We suppose now that the binding energies εℓ along the chain are independent identically distributed negative
random variables, and denote E the expectation with respect to this disorder. We will also assume c1 < c < c2,
in such a way that the homogeneous model has a second order phase transition.

The properties of a typical molecule are described by the free-energy

fq(β) = −
1

β
lim

L→∞

1

L
E[lnZL(β, ε)] ; (14)

we will denote Tc,q the temperature at which this function exhibits a phase transition (non-analyticity), if it
does so. The computation of fq(β) is in general impossible, but one can obtain some informations on it, as we
shall see.

1. Show that E[ZL(β, ε)] = Zh
L(β, εeff), for a well-chosen effective binding energy εeff (that implicitly depends

on β).

2. Deduce from this result a lowerbound on fq in terms of the free energy fh of the homogeneous model. We
shall denote Tc,a the temperature at which this bound has a singularity. Give an expression linking Tc,a

and the constant Â(R).

3. Reconsider your answer to the question (1b) of Section 2.1, and show that the same upperbound is valid
for fq.

4. Conclude that in the high temperature phase fq has the same value as fh ; why is this a posteriori physically
obvious ?

5. Show that Tc,q ≤ Tc,a.

2.3 Harris criterion

The study of the homogeneous version of the model has shown that for c1 < c < c2 the system undergoes
a second-order phase transition at finite temperature, with an exponent α that can be positive or negative
depending on c < 3/2 or c > 3/2 (see equation (13)). According to the Harris criterion seen in the lectures, an
infinitesimal disorder is relevant (modifies the properties of the system with respect to the homogeneous case)
when α > 0, irrelevant if α < 0. We shall revisit this criterion with a slightly different method here.

To describe an infinitesimal disorder we write e−βεℓ = e−βε(1 + uℓ), where ε is deterministic and the uℓ are
independent identically distributed random variables with zero average and very small variance.

1. Write explicitly ZL(β, ε) in terms of the variables uℓ.

2. As the variables u are very small we shall only keep the terms where they appear linearly and write

ZL(β, ε) = Zh
L(β, ε)

(
1 +

L∑

ℓ=1

uℓ pℓ(L, β, ε)

)
+O(u2) , (15)

where pℓ(L, β, ε) is independent of the disorder. Give the explicit form of this quantity, and interpret it as
a probability of an event in the homogeneous model.

3. Take the logarithm of this expression, expand it for small disorder, and take the average to obtain,
neglecting higher order terms :

−
1

βL
E ln[ZL(β, ε)] = −

1

βL
lnZh

L(β, ε) +
1

2β
E[u2]

(
1

L

L∑

ℓ=1

(pℓ(L, β, ε))
2

)
. (16)

4. Argue that the last parenthesis tends to θ(β, ε)2 in the large size limit, which yields

fq(β) = fh(β, ε) +
1

2β
E[u2]θ(β, ε)2 . (17)

Discuss the scaling of the two terms in the right hand side in the limit T → T−
c , and recover in this way

the Harris criterion.

To learn more about this problem you can consult the paper B. Derrida, M. Retaux, The depinning transition

in presence of disorder : a toy model, J. Stat. Phys 156, 268 (2014), and references therein.
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