#### ICFP M2 - Statistical physics 2 - Exam

## Guilhem Semerjian

## April 5th, 2019

The exam is made of two parts. The first one is a series of short independent exercices to check your knowledge and understanding of the contents of some of the lectures, the second one is a longer problem with partially independent subparts.

No document, calculator nor phone is allowed.

You can write your answers in English or French.

# 1 Questions on the lectures

1.

Consider a random variable X with the probability density  $f_X(x) = \begin{cases} C \frac{1}{\frac{5}{4}} & \text{for } x \geq 1 \\ 0 & \text{otherwise} \end{cases}$ .

- (a) Compute the value of the constant C.
- (b) Does X admits a variance? an average value?
- (c) Recall, without a long derivation, the scaling with n of the maximum  $M_n = \max(X_1, \dots, X_n)$  of n independent copies of X, when  $n \to \infty$ .
- (d) Same question for the sum  $S_n = X_1 + \cdots + X_n$ .
- 2. What is a self-averaging quantity? Give an example of such a quantity.
- 3. The Binary Symmetric Channel (BSC) takes as an input a variable  $X \in \{0,1\}$ , and outputs  $Y \in \{0,1\}$  with a probability p of flipping the output with respect to the input.
  - (a) Give the Shannon entropy (in bits) S(Y|X) of the output conditional on the input.
  - (b) Suppose that X = 0 with a probability denoted q; describe the marginal law of Y, and give the Shannon entropy S(Y).
  - (c) The capacity C(p) of the BSC channel is defined as the maximal mutual information between the output and the input, i.e.  $C(p) = \sup_{a} I(X;Y) = \sup_{a} [S(Y) S(Y|X)]$ . Compute C(p).
- 4. Consider the graph of the figure:



- (a) How many connected components does it contain?
- (b) What is the probability that it becomes connected if one adds one edge, chosen uniformly at random among the absent ones?
- 5. Let us denote X a random variable that takes the value 1 with probability p, and the value -1 with probability 1-p. Consider the sum  $S_N=X_1+\cdots+X_N$  of N independent copies of X.
  - (a) What are the possible values of  $s = \frac{1}{N}S_N$ ?
  - (b) Give an exact expression at finite N of the probability  $\mathbb{P}[S_N = Ns]$ .
  - (c) Compute the rate of large deviation  $\omega(s)$ , defined as

$$\omega(s) = \lim_{N \to \infty} \frac{1}{N} \ln \mathbb{P}[S_N = Ns] .$$

(d) Draw the shape of  $\omega(s)$ , indicating in particular the location of its maximum, and its behavior in  $s \to \pm 1$ . You may consider first the case  $p = \frac{1}{2}$ , then generalize your answers to an arbitrary value of p.

1

# 2 A model for a polymer in a disordered environment

An important class of disordered physical systems is constituted by elastic interfaces in random environments. In this problem we shall study a simple model for a polymer in presence of disorder. The model is defined on a tree in which each vertex has  $k \geq 2$  descendents for N generations, the root being the generation 0, the leaves at the N-th generation having no descendent. For instance the figure on the right represents such a tree for k=2 and N=3:



A configuration of the polymer is represented in this model as a self-avoiding path p from the root to one of the leaves, whose length (number of edges it contains) is thus N. On the figure below the four configurations in the case k=2, N=2 are represented as bold lines:



Each edge e of the tree is assigned an energy  $\varepsilon_e$ , and a configuration p of the polymer has an energy equal to the sum of the energies of the N edges it crosses, to be denoted

$$E(p) = \sum_{e \in p} \varepsilon_e .$$

For instance in the special case  $k=2,\,N=2$  we label the six edges according to the figure on the right, in such a way that the four configurations above have the energies :

$$E(p_1) = \varepsilon_1 + \varepsilon_3 , \qquad E(p_2) = \varepsilon_1 + \varepsilon_4 ,$$
  
 $E(p_3) = \varepsilon_2 + \varepsilon_5 , \qquad E(p_4) = \varepsilon_2 + \varepsilon_6 .$ 



We assume that the system is at equilibrium with a thermal bath of inverse temperature  $\beta = \frac{1}{T}$  and we denote the partition function for a system of size (length of the polymer) N

$$Z_N = \sum_p e^{-\beta E(p)} ,$$

where p runs over all possible configurations of the polymer; the parameter k is kept understood to lighten the notations.

The energies  $\varepsilon_e$  are random, independent from one edge to another, and identically distributed,  $Z_N$  is thus a random variable. We shall denote  $\mathbb{E}[\bullet]$  the average over this quenched disorder, and  $\rho(\varepsilon)$  the probability density of the energy on one edge.

The thermodynamic limit corresponds to  $N \to \infty$  with k held fixed.

#### 2.1 Basic properties

- 1. How many configurations are there for generic values of k and N?
- 2. Describe qualitatively the physical behavior of the model in the limit of infinite and zero temperature.
- 3. In the case k=N=2 represented on the figures above, compute

$$\mathbb{E}[E(p_1)^2]$$
,  $\mathbb{E}[E(p_1)E(p_2)]$ , and  $\mathbb{E}[E(p_1)E(p_3)]$ , (1)

assuming  $\mathbb{E}[\varepsilon_e] = 0$  and  $\mathbb{E}[\varepsilon_e^2] = \sigma^2$ .

4. In the general case (k and N arbitrary), discuss briefly the existence and form of correlations between the energies E(p) for the various configurations of the polymer.

#### 2.2 The annealed computation

1. Compute, for a generic value of k and N, the average partition function  $\mathbb{E}[Z_N]$ , and deduce the value of the annealed free-energy  $f_{\mathbf{a}}(\beta) = \lim_{N \to \infty} -\frac{1}{N\beta} \ln \mathbb{E}[Z_N]$ .

For simplicity we assume in the rest of this part of the problem that the energies  $\varepsilon_e$  on the edges are i.i.d. Gaussian random variables with  $\mathbb{E}[\varepsilon_e] = 0$  and  $\mathbb{E}[\varepsilon_e^2] = \sigma^2$ .

- 2. Simplify your expression of  $f_a(\beta)$ .
- 3. Compute the associated entropy  $s_a(\beta) = \beta^2 \frac{df_a}{d\beta}$ .
- 4. Draw the shape of  $f_a$  as a function of the temperature  $T = 1/\beta$ , specifying the location of its maximum  $T_c$  and the value of  $f_a$  at the maximum.
- 5. Recall (and justify briefly) the inequality between the quenched free-energy  $f_{\mathbf{q}}(\beta) = \lim_{N \to \infty} -\frac{1}{N\beta} \mathbb{E}[\ln Z_N]$  and  $f_{\mathbf{a}}(\beta)$ .
- 6. Can  $f_q$  be equal to  $f_a$  for  $T < T_c$ ? By analogy with the behavior of the Random Energy Model studied during the TDs and lectures, make a conjecture on the value of  $f_q$  at all temperatures.

## 2.3 The quenched computation via a wave equation

We come back now to an arbitrary distribution  $\rho(\varepsilon)$  for the energies on the edges.

- 1. Write down an induction relation between  $Z_{N+1}$  and i.i.d. copies of the random variables  $Z_N$  (that you might denote  $Z_N^{(1)}, Z_N^{(2)}, \ldots$ ) and  $\varepsilon$  (that you can write  $\varepsilon^{(1)}, \varepsilon^{(2)}, \ldots$ )
- 2. We define  $G_N(x) = \mathbb{E}[\exp(-e^{-\beta x}Z_N)]$  (keeping the dependency on  $\beta$  and k understood for the sake of simplicity). Show, as a consequence of your answer to the previous question, the functional induction relation between  $G_{N+1}$  and  $G_N$ ,

$$G_{N+1}(x) = (\mathbb{E}[G_N(x+\varepsilon)])^k , \qquad (2)$$

where in the right-hand-side the average is over  $\varepsilon$  with its distribution  $\rho(\varepsilon)$ .

3. Show that for any positive real z > 0,

$$\ln z = \int_{-\infty}^{\infty} dt \left( e^{-e^{-t}} - e^{-ze^{-t}} \right) , \quad \text{by}$$
 (3)

- justifying the convergence of the integral.
- checking that the equality is true for a well-chosen value of z.
- checking that the derivatives with respect to z of the left and right hand sides coincide for all z.
- 4. Write explicitly  $Z_{N=1}$ , and deduce the value that should be assigned to  $Z_{N=0}$  to initiate the induction. What is the corresponding value of  $G_0(x)$ ?
- 5. Conclude that

$$\mathbb{E}[\ln Z_N] = \beta \int_{-\infty}^{\infty} \mathrm{d}x \left( G_0(x) - G_N(x) \right) \,. \tag{4}$$

#### 2.4 The asymptotic solution of the wave equation

In order to complete the computation of the quenched free-energy density from equation (4) it remains to understand the behavior of the function  $G_N(x)$  in the large N limit. This behavior is determined by the initial condition  $G_0(x)$ , and by the induction equation (2). It is useful to think of N as a (discrete) time variable and x as a (continuous) space variable, in such a way that (2) can be seen as a wave equation encoding the time evolution of a space-dependent profile.

- 1. Draw the shape of  $G_0(x)$  as a function of x, paying special attention to its behavior in  $x \to -\infty$  and  $x \to +\infty$ , as well as its monotonicity properties.
- 2. Argue that  $G_N(x) = \mathbb{E}[\exp(-e^{-\beta x}Z_N)]$  has qualitatively the same shape.
- 3. Suppose that in the right hand side of (2)  $G_N(x) = \alpha_N$  for all x, i.e. that at time N the profile of the wave is homogeneous in space, with  $\alpha_N \in [0,1]$ . Show that  $G_{N+1}(x) = \alpha_{N+1}$  for all x, and study the mapping  $\alpha_N \to \alpha_{N+1} = r(\alpha_N)$ , in particular its fixed points and their stabilities.
- 4. Suppose that in the right hand side of (2)  $G_N(x) = H(x x_0)$ , with H the Heaviside function, i.e. that at time N the profile of the wave is an abrupt step. Draw qualitatively the shape of  $G_{N+1}(x)$  (you can think for instance that  $\varepsilon$  has a Gaussian distribution).

- 5. The previous questions lead naturally to the study of solutions of (2) that takes the form of travelling waves,  $G_N(x) = g(x Nv)$ , where g(x) is a scaling function, independent of N, that describes the shape of the travelling front connecting the stable and unstable fixed points of the mapping  $r(\alpha)$  studied above, and v is the velocity of the front. Write down the equation that g must satisfy in order for  $G_N(x) = g(x Nv)$  to be a solution of (2).
- 6. Argue qualitatively that the velocity v should be positive.
- 7. The equation on g admits a priori one solution for all positive v (up to an irrelevant shift of the origin of the x axis), that we shall denote  $g_v$ . Writing  $g_v(x) = 1 h_v(x)$ , and assuming that  $h_v(x) \to 0$  as  $x \to +\infty$ , show that in this limit  $h_v$  obeys the following linearized equation

$$h_v(x) = k \int_{-\infty}^{\infty} d\varepsilon \, \rho(\varepsilon) \, h_v(x + v + \varepsilon) + O(h_v^2) .$$
 (5)

- 8. Suppose that  $h_v(x)$  has an exponential tail behavior,  $h_v(x) \sim c e^{-\lambda x}$  when  $x \to +\infty$ , with  $\lambda > 0$  and c an arbitrary constant, and find a relation  $v(\lambda)$  between the tail behavior and the velocity of the front. Simplify your answer assuming that  $\varepsilon$  is Gaussian with variance  $\sigma^2$ , and draw the shape of  $v(\lambda)$  in this case.
- 9. We assume now that the initial condition  $G_0(x)$  evolves under the wave equation (2) to reach at large N the traveling wave form  $g_{\widehat{v}(\beta)}(x N\widehat{v}(\beta))$ , with a velocity  $\widehat{v}(\beta)$  selected by the initial condition. Using the identity (4), relate  $f_q(\beta)$  and  $\widehat{v}(\beta)$ .
- 10. Show that the natural identification of the tail behavior of the travelling wave with the one of the initial condition, namely  $\hat{v}(\beta) = v(\beta)$ , leads to  $f_q(\beta) = f_a(\beta)$ .
- 11. A more detailed analysis shows that the velocity of the front is fixed by the initial condition according to  $\widehat{v}(\beta) = \min_{\lambda \in ]0,\beta]} v(\lambda)$ . Interpret qualitatively this relation from the physical properties of the wave equation established previously. Deduce then the value of  $f_q$  at all temperatures, and compare with your answer to question 2.2.6.

#### 2.5 The replica computation

We will see now how this result for the quenched free-energy can be recovered with a replica computation. For simplicity we consider that the energies on the edges  $\varepsilon_e$  are Gaussian of zero mean and variance  $\sigma^2$ .

- 1. Recall the replica trick that allows to compute  $\mathbb{E}[\ln Z_N]$  from a well-chosen limit of  $\mathbb{E}[Z_N^n]$ .
- 2. Consider  $p_a$  and  $p_b$ , two configurations of the polymer of size N, and let us define the overlap  $q(p_a, p_b)$  as the number of common edges crossed by the two configurations, divided by N. Express  $\mathbb{E}[E(p_a)E(p_b)]$  in terms of  $q(p_a, p_b)$ .
- 3. Show that for an integer value of n one can write

$$\mathbb{E}[Z_N^n] = \int \prod_{1 \le a < b \le n} dq_{a,b} \, e^{Ns(Q)} \exp\left[N \frac{1}{2} \beta^2 \sigma^2 \sum_{a,b=1}^n q_{a,b}\right] \,, \tag{6}$$

where Q denotes the  $n \times n$  matrix containing as matrix elements the overlaps  $q_{a,b}$ ; you will give a formal expression for the entropic term  $e^{Ns(Q)}$ , and specify the value of the diagonal terms  $q_{a,a}$ .

- 4. In order to complete the replica computation one needs to make an ansatz on the form of Q that brings the dominant contribution in the thermodynamic limit. We will take the "one step of Replica Symmetry Breaking" one (1RSB), in which the n replicas are divided into n/m groups of m replicas and with  $q_{a,b} = 1$  if the replicas a and b are in the same group, 0 otherwise. Evaluate, at the leading exponential order in N, the energetic and entropic terms in equation (6).
- 5. Evaluate  $f_{1\text{RSB}}(\beta; m)$  by taking the thermodynamic limit within the 1RSB ansatz; show that  $f_{1\text{RSB}}(\beta; m) = f_{a}(\beta m)$ . Conclude that  $f_{q}(\beta) = \sup_{m \in [0,1]} f_{1\text{RSB}}(\beta; m)$ .

To learn more about this problem you can consult the paper B. Derrida, H. Spohn, *Polymers on disordered trees, spin glasses, and traveling waves*, J. Stat. Phys **51**, 817 (1988).