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École Normale Supérieure

M2 (Fall/Winter 2018)

Final Exam: Quantum Field Theory

This exam is closed book, closed notes. It consists of seven pages. Useful formulae are collected in
appendix A and the Feynman rules of QED are summarized in appendix B. It is essential that you

exhibit your calculations with all required intermediate steps. You have 3 hours. Good luck!

1 Pseudoscalar decay to photons

Consider the Lagrangian density

Lπ = −1

4
FµνF

µν − 1

2
π(�+m2

π)π + ψ̄(i∂/− eA/−m)ψ + iλ πψ̄γ5ψ . (1)

This Lagrangian describes QED coupled to a (one-component) field π.

1. The Feynman rules for renormalized QED are given in appendix B. In this problem, we do not
need to worry about renormalization, so we will instead consider the Feynman rules for the bare
Lagrangian. Write down these rules for Lπ.

2. Recall the transformation of Dirac fermions in the Weyl basis under parity:

Pψ(x)P−1 = γ0ψ(Px) . (2)

We have denoted the matrix implementing the parity transformation on R1,3 by P. How must
the field π transform under parity in order for the action of the theory which is defined by Lπ

to be parity invariant?

3. Draw the lowest order Feynman diagrams contributing to the decay π → γγ, where we have
indicated photons by the letter γ. Designate by the letter p the momentum carried by π, and the
momenta of the two photons by the letters q1 and q2. Label all internal lines with the momentum
flowing through them.

4. Write down the matrix element iM corresponding to the contribution from these Feynman
diagrams. Your result should be of the form

iM = CµνM
µν(q1, q2) , (3)

with Cµν depending on the coupling constants and polarization tensors, and with Mµν of the
form ∫

d4k

(2π)4
Tr . . . . (4)

Leave the momenta q1 and q2 general until further notice.
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5. What is the superficial degree of divergence of iM?

6. How does iM behave under exchange of the two photons? Use this behavior together with
Lorentz invariance to constrain the dependence of Mµν on qµ1 and qν2 . You will need to use the
fully antisymmetric tensor εµναβ . Does this dependence allow you to modify your prediction
regarding the convergence or divergence of the d4k integral in Mµν?

7. Evaluate the trace in Mµν . You should obtain a result proportional to

Mµν = 8mεµναβq1αq
2
β

∫
d4k

(2π)4
1

[(k − q1)2 −m2] [(k + q2)2 −m2] [k2 −m2]
. (5)

8. Rewrite Mµν using Feynman parameters. Express the result in terms of the momentum variables
q21, q22, and s = (q1 + q2)

2.

9. Take all momentum variables on-shell, and evaluate the integrals over the Feynman parameters
in the limit mπ � m. What is the final result for M in this limit?

2 Time reversal

Recall that the time reversal operator T ,

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (6)

is represented on Hilbert space by an anti-unitary operator T that satisfies

TU(Λ, a)T−1 = U(T ΛT −1, T a) (7)

for Λ a proper orthochronous Lorentz transformation, Λ ∈ SO↑(1, 3), and for a ∈ R4.

1. Work out the action of T on the Lie algebra generators Jµν of Lorentz transformations and the
Lie algebra generators Pµ of space-time translations. Next, write the action explicitly on the
Hamiltonian, the momentum operators, the rotation operators, and the boost operators.

2. Why was it necessary to choose T to be anti-unitary?

3. Consider a massive eigenstate |ψk,σ〉 of the space-time translation and rotation group, where
kµ = (M, 0, 0, 0),

Pµ|ψk,σ〉 = kµ|ψk,σ〉 , J3|ψk,σ〉 = σ|ψk,σ〉 . (8)

Justify the following equality:
T |ψk,σ〉 = ζσ|ψk,−σ〉 (9)

for some phase factor ζσ. What assumption did you need to make?

4. Recall that the raising and lowering operators in the spin j representation of SU(2) act as

(J1 ± iJ2)|σ〉 =
√
(j ∓ σ)(j ± σ + 1)|σ ± 1〉 . (10)

Use this relation to derive a relation between the phases ζσ at different σ. Propose a simple
solution for the relation you obtain.
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5. Given the action of T on |ψk,σ〉, work out its action on ζ|ψk,σ〉, for an arbitrary phase ζ. What
can you conclude regarding the intrinsic time-reversal phase of massive particles?

6. For an arbitrary momentum p satisfying p2 = M2, use the explicit form of L(p) given in the
appendix to compute

T L(p)T −1 . (11)

Use this to derive the action of T on |ψp,σ〉.

3 The axial anomaly

Consider the Lagrangian density of QED,

L = −1

4
FµνF

µν + ψ̄(i∂/− eA/−m)ψ . (12)

1. Work out the equations of motion for the fields ψ̄ and ψ.

2. Write down the global U(1) symmetry of L that underlies electromagnetism.

3. Recall that the field ψ transforms in the reducible Dirac representation of the Lorentz group.
The operators 1

2(1± γ5) project onto the irreducible left- and right-moving Weyl representation,

ψL =
1

2
(1− γ5)ψ , ψR =

1

2
(1 + γ5)ψ . (13)

Rewrite L in terms of ψL and ψR.

4. Show that in the massless limit m = 0, the global U(1) symmetry enhances to a U(1) × U(1)
symmetry.

5. Show that the symmetry you identified in the previous question can be written as

ψ → eiαψ , ψ → eiβγ
5
ψ . (14)

6. Derive the Noether currents (written in terms of the Dirac fields ψ and ψ̄) corresponding to the
two symmetries (14), and call them Jµ, Jµ

5 respectively.

7. By invoking the equations of motion at m 6= 0, evaluate

∂µJ
µ and ∂µJ

µ
5 . (15)

Does the result match your expectations?

It turns out that the symmetry giving rise to the current Jµ
5 in the theory at m = 0 is anoma-

lous. The rest of this problem is dedicated to demonstrating the violation of this symmetry quantum
mechanically.

8. Consider the expression

iMαµν
5 (p, q1, q2)(2π)

4δ4(p− q1 − q2) =

∫
d4x d4y d4z e−ipxeiq1yeiq2z〈Ω|T{Jα

5 (x)J
µ(y)Jν(z)}|Ω〉 .

(16)
Write down the Feynman diagrams that contribute to Mαµν

5 at lowest order.
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9. To study the conservation properties of the current Jµ
5 , we contract Mαµν

5 by pα (assuming
p 6= q1, q2),

pαM
αµν
5 (p, q1, q2)(2π)

4δ4(p−q1−q2) = −
∫
d4x d4y d4z e−ipxeiq1yeiq2z〈Ω|T{∂αJα

5 (x)J
µ(y)Jν(z)}|Ω〉 .

(17)
To leading order, this evaluates to

pαM
αµν
5 =

∫
d4k

(2π)4

[
Tr
[
γµk/γν(k/+ q2/)p/γ

5(k/− q1/)
]

k2(k + q2)2(k − q1)2
+ (µ↔ ν, 1 ↔ 2)

]
. (18)

You are NOT asked to verify this result.
To simplify the above expression, first show that

p/γ5 = γ5(k/− q1/) + (k/+ q2/)γ
5 . (19)

10. Substitute (19) into (18) and show using symmetry arguments that if you close your eyes to
convergence issues of the integrals, pαMαµν

5 vanishes.

11. To do better, we will use dimensional regularization. We need a prescription to deal with
γ5, which cannot be defined in arbitrary dimensions. We will follow ’t Hooft and Veltman’s
prescription of maintaining the definition

γ5 = iγ0γ1γ2γ3 (20)

in arbitrary (fractional) dimension d, and formally decomposing a d dimensional momentum
vector k as

k = k4 + kε , (21)

such that

k/γ5 =

 3∑
µ=0

(k4)µγ
µ +

∑
η

(kε)ηγ
η

 γ5 (22)

= γ5

−
3∑

µ=0

(k4)µγ
µ +

∑
η

(kε)ηγ
η

 . (23)

The matrix γ5 is hence taken to anti-commute with γµ for µ = 0, 1, 2, 3, and to commute with
the γη. The sum over the index η is formal: it extends over the fractional dimensions. We will
extend the notation k/ε =

∑
η(kε)ηγ

η to this case.
We will use the ’t Hooft/Veltman prescription to evaluate (18). First, take the momentum k
(which will be integrated over) to be in general dimension d, and all other occurring momenta to
be purely four dimensional, and show that the RHS of equation (19), when expressed in terms
of k and kε, picks up a correction term.

12. Substituting the result you just obtained in (18), show that this expression, with the k integration
continued to d dimensions, evaluates to

pαM
αµν
5 = −16i εµναβ(q1)α(q2)β

∫
ddk

(2π)d
k2ε

k2(k + q2)2(k − q1)2
. (24)

You can use
(k/ε)

2 = k2ε (25)

in intermediate steps.
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13. Simplify (24) using Feynman parameters.

14. Set
k2ε =

d− 4

d
k2 (26)

under the ddk integral. Evaluate pαMαµν
5 in dimensional regularization in d = 4− ε dimensions

in the limit ε→ 0.

A Useful formulae

The fiducial Lorentz transformation for M > 0

For M > 0, the fiducial Lorentz transformation L(p) which maps k = (M, 0, 0, 0) to p,

L(p)µνk
ν = pµ , (27)

can be chosen to be

L(p) =

(
γ

√
γ2 − 1p̂i√

γ2 − 1p̂j δij + (γ − 1)p̂ip̂j

)
i,j=1,2,3

(28)

with γ =
√

p2+M2

M and p̂ = p
|p| .

The fine structure constant
α =

e2

4π
. (29)

Electron and positron polarization tensor

(/p−m)u(p) = 0 , (/p+m)v(p) = 0 . (30)

Weyl representation of γ matrices

γµ =

(
σµ

σ̄µ

)
(31)

where
σµ = (1, ~σ) , σ̄µ = (1,−~σ) , (32)

and ~σ = (σ1, σ2, σ3) are the Pauli matrices, which satisfy

[σi, σj ] = 2iεijkσk . (33)

Feynman parameters
1

AB
=

∫ 1

0
dx dy δ(x+ y − 1)

1

[xA+ yB]2
. (34)

1

ABC
=

∫ 1

0
dx dy dz δ(x+ y + z − 1)

2

[xA+ yB + zC]3
. (35)
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Evaluating integrals via Wick rotation∫
d4k

(2π)4
k2

(k2 −∆+ iε)4
=

−i
48π2

1

∆
. (36)

∫
d4k

(2π)4
1

(k2 −∆+ iε)r
= i

(−1)r

(4π)2
1

(r − 1)(r − 2)

1

∆r−2
, r > 2 . (37)

Dimensional regularization∫
ddk

(2π)d
k2a

(k2 −∆)b
= i(−1)a−b 1

(4π)d/2
1

∆b−a− d
2

Γ(a+ d
2)Γ(b− a− d

2)

Γ(b)Γ(d2)
. (38)

Γ(ε) =
1

ε
− γE +O(ε) . (39)

γ-matrices: properties and trace identities

{γµ, γν} = 2gµν . (40)

γ5 = iγ0γ1γ2γ3 , (γ5)2 = 1 . (41)

(γµ)† = γ0γµγ0 . (42)

Tr γ5 = Tr γµ = Tr[odd number of γ-matrices] = 0 . (43)

Tr(γµγν) = 4gµν , (44)

Tr(γαγµγβγν) = 4
(
gαµgβν − gαβgµν + gανgβµ

)
, (45)

Tr(γµγνγαγβγ5) = −4i εµναβ . (46)
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B Feynman rules for renormalized perturbation theory of QED

p
=

i(/p+mR)

p2 −m2
R + iε

p
=

−i
p2 + iε

[
gµν − (1− ξ)

pµpν

p2

]

= −ieRγµ

= i(/pδ2 − (δm + δ2)mR)

= −iδ3p2gµν (in Feynman gauge)

= −ieRδ1γµ

p
= εµ(p) (incoming)

p
= ε∗µ(p) (outgoing)

p
= us(p) (incoming)

p
= ūs(p) (outgoing)

p

= v̄s(p) (incoming)
p

= vs(p) (outgoing)
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