ICFP Masters program

École Normale Supérieure
M1 (Fall/Winter 2014/2015)

Final Exam: Mathematical Aspects of Symmetries in Physics

1 Finite groups and representations

In the following, we will say a group is generated by elements $a_{1}, a_{2}, \ldots, a_{n}$ if all of its elements can be written as products of powers of these elements (including the trivial power $a^{0}=e$).

1. Cyclic groups

A group G is cyclic of order m if an element $a \in G$ exists such that $G=\left\langle a: a^{m}=e\right\rangle$, i.e. G is generated by the element a, which satisfies the given relation.
(a) Let G be a cyclic group of order m. Suppose that $A \in G L(n, \mathbb{C})$, and define $\rho: G \rightarrow G L(n, \mathbb{C})$ by

$$
\begin{equation*}
\rho: a^{r} \rightarrow A^{r} \quad(0 \leq r \leq m-1) . \tag{1}
\end{equation*}
$$

Show that ρ is a representation of G over \mathbb{C} if and only if $A^{m}=1$.
(b) A group G is said to be simple if $G \neq\{e\}$ and the only normal subgroups of G are $\{e\}$ and G. Show that if G is a finite abelian group that is simple, then G is cyclic of prime order.
2. The symmetric group

Define the permutations $a, b, c \in S_{6}$ by

$$
\begin{equation*}
a=(123), \quad b=(456), \quad c=(23)(45) \tag{2}
\end{equation*}
$$

and let $G=\langle a, b, c\rangle$ be the subgroup of S_{6} generated by these elements.
(a) Check that

$$
\begin{align*}
& a^{3}=b^{3}=c^{2}=e, \quad a b=b a \tag{3}\\
& c^{-1} a c=a^{-1}, \quad c^{-1} b c=b^{-1} \tag{4}
\end{align*}
$$

(b) Deduce the upper bound 18 for the order of G. What is the order of the subgroup $\langle a, b\rangle$ of G ? Conclude that the order of G is 18 .
(c) Suppose that ϵ and η are complex cube roots of unity. Prove that there is a representation ρ of G over \mathbb{C} such that

$$
\rho(a)=\left(\begin{array}{cc}
\epsilon & 0 \tag{5}\\
0 & \epsilon^{-1}
\end{array}\right), \quad \rho(b)=\left(\begin{array}{cc}
\eta & 0 \\
0 & \eta^{-1}
\end{array}\right), \quad \rho(c)=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

(d) Is ρ faithful (that is $1: 1$) for an appropriate choice of ϵ and η ? If so, for which?
3. Irreducibility
(a) Let G be a finite group and let $\rho: G \rightarrow G L(2, \mathbb{C})$ be a representation of G. Suppose that there are elements g, h in G such that the matrices $\rho(g)$ and $\rho(h)$ do not commute. Prove that ρ is irreducible.
(b) Assume that the representation (V, ρ) of a finite group G is reducible, $V=U \oplus W$. Consider the projection map

$$
\begin{align*}
\pi: V & \rightarrow V \tag{6}\\
u+w & \mapsto u \quad \forall u \in U, w \in W \tag{7}
\end{align*}
$$

Prove that the projection map is equivariant. Using this result, prove the following proposition by contradiction:
Proposition: Let V be a representation of a finite group G, and suppose that every equivariant map from V to V is a scalar multiple of the identity map on V. Then V is irreducible.
(c) By an application of the previous result and Schur's lemma, prove the following proposition:

Proposition: Let $\rho: G \rightarrow G L(n, \mathbb{C})$ be a representation of the finite group G. Then ρ is irreducible if and only if every $n \times n$ matrix A which satisfies

$$
\begin{equation*}
\rho(g) A=A \rho(g) \quad \forall g \in G \tag{8}
\end{equation*}
$$

has the form $A=\lambda I_{n}$, with $\lambda \in \mathbb{C}$ and where I_{n} is the identity matrix on \mathbb{C}.
(d) Suppose that $G=D_{8}=\left\langle a, b: a^{4}=b^{2}=e, b^{-1} a b=a^{-1}\right\rangle$ is the group generated by the elements a and b, which satisfy the relations indicated. Check that there is a representation ρ of G over \mathbb{C} such that

$$
\rho(a)=\left(\begin{array}{cc}
-7 & 10 \tag{9}\\
-5 & 7
\end{array}\right), \quad \rho(b)=\left(\begin{array}{cc}
-5 & 6 \\
-4 & 5
\end{array}\right) .
$$

Find all 2×2 matrices M such that $M \rho(g)=\rho(g) M$ for all $g \in G$. Hence determine whether or not ρ is irreducible, using the result from (3c).
4. Characters
(a) The character table of S_{3} is given by

	(1)	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

where representatives of the conjugacy classes of S_{3} are listed in the first row, and χ_{i} denote the irreducible characters of S_{3}. Let χ be the class function on S_{3} with the following values:

$$
\begin{array}{c|ccc}
& (1) & (12) & (123) \\
\hline \chi & 19 & -1 & -2
\end{array}
$$

Using the appropriate orthogonality relation of characters, express χ as a linear combination of χ_{1}, χ_{2} and χ_{3}. Give a representation of which χ is the character.
(b) A certain group G of order 8 is known to have a total of five conjugacy classes, with representatives g_{1}, \ldots, g_{5}. Four of its five irreducible characters take the following values:

g_{i}	$g_{1}=e$	g_{2}	g_{3}	g_{4}	g_{5}
$\left\|C_{G}\left(g_{i}\right)\right\|$	8	8	4	4	4
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1

Note that beneath each representative g_{i} of a conjugacy class, we have given the order of the corresponding centralizer. Using the appropriate orthogonality relation of characters, find the complete character table of G. Justify each entry for χ_{5}.

2 Differential manifolds, Lie groups, and Lie algebras

1. Product manifolds

Let $\left(M_{1}, \mathcal{F}_{1}\right)$ and $\left(M_{2}, \mathcal{F}_{2}\right)$ be differential manifolds of dimension d_{1} and d_{2} respectively. Then $M_{1} \times M_{2}$ becomes a differential manifold of dimension $d_{1}+d_{2}$ with differential structure \mathcal{F} defined as the maximal collection containing

$$
\begin{equation*}
\left\{\left(U_{\alpha} \times V_{\beta}, \varphi_{\alpha} \times \psi_{\beta}\right):\left(U_{\alpha}, \varphi_{\alpha}\right) \in \mathcal{F}_{1},\left(V_{\beta}, \psi_{\beta}\right) \in \mathcal{F}_{2}\right\} \tag{10}
\end{equation*}
$$

Now consider the product manifold $M \times N$ with the canonical projections $\pi_{1}: M \times N \rightarrow M$ and π_{2} : $M \times N \rightarrow N$.
(a) Prove that for differential manifolds M, N, \tilde{M}, the map $\alpha: \tilde{M} \rightarrow M \times N$ is C^{∞} if and only if $\pi_{1} \circ \alpha$ and $\pi_{2} \circ \alpha$ are C^{∞}.
(b) Prove that the map $v \mapsto\left(d \pi_{1}(v), d \pi_{2}(v)\right)$ is an isomorphism of $T_{(m, n)} M \times N$ with $T_{m} M \oplus T_{n} N$.
(c) Let X and Y be C^{∞} vector fields on M and N respectively. Then, by (b), X and Y canonically determine vector fields $\tilde{X}=(X, 0)$ and $\tilde{Y}=(0, Y)$ on $M \times N$. Prove that $[\tilde{X}, \tilde{Y}]=0$.
(d) Let $\left(m_{0}, n_{0}\right) \in M \times N$, and define injections $i_{n_{0}}: M \rightarrow M \times N$ and $i_{m_{0}}: N \rightarrow M \times N$ by setting

$$
\begin{equation*}
i_{n_{0}}(m)=\left(m, n_{0}\right), \quad i_{m_{0}}(n)=\left(m_{0}, n\right) . \tag{11}
\end{equation*}
$$

Let $v \in T_{\left(m_{0}, n_{0}\right)} M \times N$, and let $v_{1}=d \pi_{1}(v) \in T_{m_{0}} M$, and $v_{2}=d \pi_{2}(v) \in T_{n_{0}} N$. Let $f: M \times N \rightarrow \mathbb{R}$ be C^{∞}. Prove that

$$
\begin{equation*}
v(f)=v_{1}\left(f \circ i_{n_{0}}\right)+v_{2}\left(f \circ i_{m_{0}}\right) . \tag{12}
\end{equation*}
$$

2. Transformations
(a) Let M, N be differential manifolds, $\varphi: M \rightarrow N$ smooth, $d \varphi_{m}: T_{m} M \rightarrow T_{\varphi(m)} N$ for $m \in M$. Let $\left(U_{i}, \mu^{i}\right)$ and $\left(V_{i}, \nu^{i}\right), i=1,2$, be coordinate systems on M, N respectively, $m \in U_{1} \cap U_{2}, \varphi(m) \in V_{1} \cap V_{2}$. Express $d \varphi_{m}$ as

$$
\begin{equation*}
d \varphi_{m}=\left.\left.\sum_{k, l} a_{k l}^{i} \frac{\partial}{\partial \nu_{k}^{i}}\right|_{\varphi(m)} d \mu_{l}^{i}\right|_{m} \tag{13}
\end{equation*}
$$

for $i=1,2$. Recall that with the notation we have introduced for differentials on functions $f: M \rightarrow \mathbb{R}$, $\left\{\left.d \mu_{l}^{i}\right|_{m}\right\}$ for $i=1,2$ furnish bases for the cotangent space at the point m.
How are the coefficients $a_{k l}^{1}$ and $a_{k l}^{2}$ related? We refer to this relation as the transformation property of the coefficients.
(b) Now assume $N=\mathbb{R}$, and let $\nu^{1}=\nu^{2}$ be the natural coordinate system on \mathbb{R}. How does the transformation formula simplify?
(c) Let $\varphi_{i}: M \rightarrow \mathbb{R}, i=1, \ldots, n$ be smooth coordinate functions on the n dimensional differential manifold M. The wedge product of the 1 -forms $d \varphi_{i}$ is defined as

$$
\begin{equation*}
d \varphi_{1} \wedge \ldots \wedge d \varphi_{n}=\frac{1}{n!} \sum_{i_{1}, \ldots, i_{n}=1}^{n} \epsilon^{i_{1} \ldots i_{n}} d \varphi_{i_{1}} \otimes \ldots \otimes d \varphi_{i_{n}} \tag{14}
\end{equation*}
$$

Here, $\epsilon^{i_{1} \ldots i_{n}}$ is the totally antisymmetric symbol defined by $\epsilon^{1 \ldots n}=1$ and antisymmetry under transposition of two indices (thus, e.g., $\epsilon^{123}=-\epsilon^{132}$). Consider a second set of coordinate functions $\psi_{i}: M \rightarrow \mathbb{R}, i=1, \ldots, n$. Consider $n=2$. How are $d \varphi_{1} \wedge d \varphi_{2}$ and $d \psi_{1} \wedge d \psi_{2}$ related? Now consider general n. How are $d \varphi_{1} \wedge \ldots \wedge d \varphi_{n}$ and $d \psi_{1} \wedge \ldots \wedge d \psi_{n}$ related? What familiar object from calculus has the same transformation property?
(d) Consider $M=\mathbb{R}^{3}$, μ the natural coordinate system on \mathbb{R}^{3}, and ν spherical coordinates on $\mathbb{R}^{3}-\{0\}$. How are $d x_{1} \wedge d x_{2} \wedge d x_{3}$ and $d r \wedge d \varphi \wedge d \theta$ related?
3. Right invariant vector fields

Let G be a Lie group. A vector field Y on G is right invariant if Y is r_{σ}-related to itself for each $\sigma \in G$, where

$$
\begin{array}{rll}
r_{\sigma}: G & \rightarrow & G \\
\tau & \mapsto & \tau \sigma \tag{16}
\end{array}
$$

(a) Prove that the set of right invariant vector fields on G forms a Lie algebra under the Lie bracket operation and is naturally isomorphic as a vector space with $T_{e} G$. You can assume as true that right invariant vector fields are smooth.
(b) Let $\varphi: G \rightarrow G$ be the diffeomorphism defined by $\varphi(\sigma)=\sigma^{-1}$.
i. Is φ a group homomorphism?
ii. For a vector field X on G, prove that $d \varphi \circ X \circ \varphi$ is a vector field on G.
iii. Prove that if X is a left invariant vector field on G, then $\tilde{X}=d \varphi \circ X \circ \varphi$ is a right invariant vector field on G.
iv. Prove that \tilde{X} at e equals $-X(e)$. Hint: consider the differential of the map

$$
\begin{align*}
& G \rightarrow G \times G \rightarrow G \times G \rightarrow G \tag{17}\\
& \sigma \mapsto(\sigma, \sigma) \mapsto\left(\sigma^{-1}, \sigma\right) \mapsto e \tag{18}
\end{align*}
$$

and use the idea behind equation (12) above.
v. Prove that $X \mapsto \tilde{X}$ gives a Lie algebra isomorphism of the Lie algebra of left invariant vector fields on G with the Lie algebra of right invariant vector fields on G.

