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Final Exam: Mathematical Aspects of Symmetries in Physics

1 Finite groups and representations

In the following, we will say a group is generated by elements a1, a2, . . . , an if all of its elements can be written
as products of powers of these elements (including the trivial power a0 = e).

1. Cyclic groups

A group G is cyclic of order m if an element a ∈ G exists such that G = 〈a : am = e〉, i.e. G is generated
by the element a, which satisfies the given relation.

(a) Let G be a cyclic group of order m. Suppose that A ∈ GL(n,C), and define ρ : G→ GL(n,C) by

ρ : ar → Ar (0 ≤ r ≤ m− 1) . (1)

Show that ρ is a representation of G over C if and only if Am = 1.

(b) A group G is said to be simple if G 6= {e} and the only normal subgroups of G are {e} and G. Show
that if G is a finite abelian group that is simple, then G is cyclic of prime order.

2. The symmetric group

Define the permutations a, b, c ∈ S6 by

a = (123) , b = (456) , c = (23)(45) (2)

and let G = 〈a, b, c〉 be the subgroup of S6 generated by these elements.

(a) Check that
a3 = b3 = c2 = e , ab = ba , (3)

c−1ac = a−1 , c−1bc = b−1 . (4)

(b) Deduce the upper bound 18 for the order of G. What is the order of the subgroup 〈a, b〉 of G?
Conclude that the order of G is 18.

(c) Suppose that ε and η are complex cube roots of unity. Prove that there is a representation ρ of G
over C such that

ρ(a) =

(
ε 0
0 ε−1

)
, ρ(b) =

(
η 0
0 η−1

)
, ρ(c) =

(
0 1
1 0

)
. (5)

(d) Is ρ faithful (that is 1:1) for an appropriate choice of ε and η? If so, for which?
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3. Irreducibility

(a) Let G be a finite group and let ρ : G → GL(2,C) be a representation of G. Suppose that there are
elements g, h in G such that the matrices ρ(g) and ρ(h) do not commute. Prove that ρ is irreducible.

(b) Assume that the representation (V, ρ) of a finite group G is reducible, V = U ⊕W . Consider the
projection map

π : V → V (6)

u+ w 7→ u ∀u ∈ U,w ∈W . (7)

Prove that the projection map is equivariant. Using this result, prove the following proposition by
contradiction:

Proposition: Let V be a representation of a finite group G, and suppose that every equivariant map
from V to V is a scalar multiple of the identity map on V . Then V is irreducible.

(c) By an application of the previous result and Schur’s lemma, prove the following proposition:

Proposition: Let ρ : G→ GL(n,C) be a representation of the finite group G. Then ρ is irreducible if
and only if every n× n matrix A which satisfies

ρ(g)A = Aρ(g) ∀g ∈ G (8)

has the form A = λIn, with λ ∈ C and where In is the identity matrix on C.

(d) Suppose that G = D8 = 〈a, b : a4 = b2 = e, b−1ab = a−1〉 is the group generated by the elements a
and b, which satisfy the relations indicated. Check that there is a representation ρ of G over C such
that

ρ(a) =

(
−7 10
−5 7

)
, ρ(b) =

(
−5 6
−4 5

)
. (9)

Find all 2× 2 matrices M such that Mρ(g) = ρ(g)M for all g ∈ G. Hence determine whether or not
ρ is irreducible, using the result from (3c).

4. Characters

(a) The character table of S3 is given by

(1) (1 2) (1 2 3)
χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

where representatives of the conjugacy classes of S3 are listed in the first row, and χi denote the
irreducible characters of S3. Let χ be the class function on S3 with the following values:

(1) (1 2) (1 2 3)
χ 19 -1 -2

Using the appropriate orthogonality relation of characters, express χ as a linear combination of χ1,
χ2 and χ3. Give a representation of which χ is the character.

(b) A certain group G of order 8 is known to have a total of five conjugacy classes, with representatives
g1, . . . , g5. Four of its five irreducible characters take the following values:

gi g1 = e g2 g3 g4 g5
|CG(gi)| 8 8 4 4 4
χ1 1 1 1 1 1
χ2 1 1 1 -1 -1
χ3 1 1 -1 1 -1
χ4 1 1 -1 -1 1
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Note that beneath each representative gi of a conjugacy class, we have given the order of the corre-
sponding centralizer. Using the appropriate orthogonality relation of characters, find the complete
character table of G. Justify each entry for χ5.

2 Differential manifolds, Lie groups, and Lie algebras

1. Product manifolds

Let (M1,F1) and (M2,F2) be differential manifolds of dimension d1 and d2 respectively. Then M1 ×M2

becomes a differential manifold of dimension d1 + d2 with differential structure F defined as the maximal
collection containing

{(Uα × Vβ , ϕα × ψβ) : (Uα, ϕα) ∈ F1, (Vβ , ψβ) ∈ F2} (10)

Now consider the product manifold M × N with the canonical projections π1 : M × N → M and π2 :
M ×N → N .

(a) Prove that for differential manifolds M,N, M̃ , the map α : M̃ →M ×N is C∞ if and only if π1 ◦ α
and π2 ◦ α are C∞.

(b) Prove that the map v 7→ (dπ1(v), dπ2(v)) is an isomorphism of T(m,n)M ×N with TmM ⊕ TnN .

(c) Let X and Y be C∞ vector fields on M and N respectively. Then, by (b), X and Y canonically
determine vector fields X̃ = (X, 0) and Ỹ = (0, Y ) on M ×N . Prove that [X̃, Ỹ ] = 0.

(d) Let (m0, n0) ∈M ×N , and define injections in0 : M →M ×N and im0 : N →M ×N by setting

in0
(m) = (m,n0) , im0

(n) = (m0, n) . (11)

Let v ∈ T(m0,n0)M ×N , and let v1 = dπ1(v) ∈ Tm0
M , and v2 = dπ2(v) ∈ Tn0

N . Let f : M ×N → R
be C∞. Prove that

v(f) = v1(f ◦ in0) + v2(f ◦ im0) . (12)

2. Transformations

(a) Let M , N be differential manifolds, ϕ : M → N smooth, dϕm : TmM → Tϕ(m)N for m ∈ M . Let
(Ui, µ

i) and (Vi, ν
i), i = 1, 2, be coordinate systems onM , N respectively, m ∈ U1∩U2, ϕ(m) ∈ V1∩V2.

Express dϕm as

dϕm =
∑
k,l

aikl
∂

∂νik
|ϕ(m)dµ

i
l|m (13)

for i = 1, 2. Recall that with the notation we have introduced for differentials on functions f : M → R,
{dµil|m} for i = 1, 2 furnish bases for the cotangent space at the point m.

How are the coefficients a1kl and a2kl related? We refer to this relation as the transformation property
of the coefficients.

(b) Now assume N = R, and let ν1 = ν2 be the natural coordinate system on R. How does the
transformation formula simplify?

(c) Let ϕi : M → R, i = 1, . . . , n be smooth coordinate functions on the n dimensional differential
manifold M . The wedge product of the 1-forms dϕi is defined as

dϕ1 ∧ . . . ∧ dϕn =
1

n!

n∑
i1,...,in=1

εi1...indϕi1 ⊗ . . .⊗ dϕin . (14)

Here, εi1...in is the totally antisymmetric symbol defined by ε1...n = 1 and antisymmetry under
transposition of two indices (thus, e.g., ε123 = −ε132). Consider a second set of coordinate functions
ψi : M → R , i = 1, . . . , n. Consider n = 2. How are dϕ1 ∧ dϕ2 and dψ1 ∧ dψ2 related? Now consider
general n. How are dϕ1 ∧ . . . ∧ dϕn and dψ1 ∧ . . . ∧ dψn related? What familiar object from calculus
has the same transformation property?

(d) Consider M = R3, µ the natural coordinate system on R3, and ν spherical coordinates on R3 − {0}.
How are dx1 ∧ dx2 ∧ dx3 and dr ∧ dϕ ∧ dθ related?
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3. Right invariant vector fields

Let G be a Lie group. A vector field Y on G is right invariant if Y is rσ-related to itself for each σ ∈ G,
where

rσ : G → G (15)

τ 7→ τσ (16)

(a) Prove that the set of right invariant vector fields on G forms a Lie algebra under the Lie bracket
operation and is naturally isomorphic as a vector space with TeG. You can assume as true that right
invariant vector fields are smooth.

(b) Let ϕ : G→ G be the diffeomorphism defined by ϕ(σ) = σ−1.

i. Is ϕ a group homomorphism?

ii. For a vector field X on G, prove that dϕ ◦X ◦ ϕ is a vector field on G.

iii. Prove that if X is a left invariant vector field on G, then X̃ = dϕ ◦ X ◦ ϕ is a right invariant
vector field on G.

iv. Prove that X̃ at e equals −X(e). Hint: consider the differential of the map

G→ G×G→ G×G→ G (17)

σ 7→ (σ, σ) 7→ (σ−1, σ) 7→ e (18)

and use the idea behind equation (12) above.

v. Prove that X 7→ X̃ gives a Lie algebra isomorphism of the Lie algebra of left invariant vector
fields on G with the Lie algebra of right invariant vector fields on G.
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