ICFP Masters program

École Normale Supérieure
M1 (Fall/Winter 2015/2016)

Final Exam: Mathematical Aspects of Symmetries in Physics

This exam is closed book, closed notes. It consists of three pages. You have 3 hours. Carefully justify each step in your reasoning. Good luck!

1 Finite groups and representations

1. Conjugacy classes

Let G denote a finite group. Recall that x^{G} denotes the equivalence class of $x \in G$ with regard to conjugation, and $Z(G)$ denotes the center of G.
(a) Prove that $\left|x^{G}\right|=1 \Leftrightarrow x \in Z(G)$.
(b) Prove the following equation, known as the class equation: Let x_{1}, \ldots, x_{l} be representatives of the conjugacy classes of G. Then

$$
|G|=|Z(G)|+\sum_{x_{i} \notin Z(G)}\left|x_{i}^{G}\right| .
$$

(c) Let p be a prime number (in French: nombre premier), and let n be a positive integer. Suppose that G is a group of order p^{n}.
i. Use the class equation to show that $Z(G) \neq\{e\}$.
ii. Suppose that $n \geq 3$ and that $|Z(G)|=p$. Prove that G has a conjugacy class of size p.

2. Equivariance, one dimensional representations

(a) Let $\left(\rho_{V}, V\right)$ and $\left(\rho_{W}, W\right)$ be two representations of a finite group G, and $\varphi: V \rightarrow W$ an invertible equivariant map. Let $\left\{v_{i}\right\}$ and $\left\{w_{j}\right\}$ be sets of basis vectors of V, W respectively. Let $\mathcal{M}^{V}, \mathcal{M}^{W}, \mathcal{M}^{\varphi}$ be the matrix representations of the functions $\rho_{V}, \rho_{W}, \varphi$ with regard to the respective bases. Express \mathcal{M}^{W} in terms of \mathcal{M}^{V} and \mathcal{M}^{φ}.
(b) Let $\rho_{1}, \rho_{2}: G \rightarrow \mathbb{C}-\{0\}$ be one-dimensional representations of a finite group G. Show that ρ_{1} is equivalent to ρ_{2} if and only if $\rho_{1}=\rho_{2}$.
(c) Let G be a finite group.
i. Let $g \in G$. Prove that the set $\left\{g^{1}, g^{2}, \ldots, g^{n}\right\}$ for an appropriate positive integer n carries a group structure. Characterize the minimal such n. It is called the order of the element g.
ii. Let ρ be a one-dimensional representation of the group G, and suppose that $g \in G$ has order n. Show that $\rho(g)$ is an $n^{t h}$-root of unity.
iii. Construct n inequivalent one-dimensional representations of the group $\mathbb{Z} / n \mathbb{Z}$.
iv. Explain why no further one-dimensional representations of $\mathbb{Z} / n \mathbb{Z}$ exist.

3. Characters

(a) A certain group G of order 12 is known to have a total of four conjugacy classes, with representatives g_{1}, \ldots, g_{4}. Three of its four irreducible characters take the following values:

g_{i}	$g_{1}=e$	g_{2}	g_{3}	g_{4}
$\left\|C_{G}\left(g_{i}\right)\right\|$	12	4	3	3
χ_{1}	1	1	1	1
χ_{2}	1	1	ω	ω^{2}
χ_{3}	1	1	ω^{2}	ω

We have here denoted $\omega=e^{2 \pi i / 3}$. Note that beneath each representative g_{i} of a conjugacy class, we have given the order of the corresponding centralizer. Using the appropriate orthogonality relation of characters, find the complete character table of G. Justify each entry for χ_{4}.
(b) Let ψ be the class function on G taking the following values:

$$
\begin{array}{c|cccc}
g_{i} & g_{1}=e & g_{2} & g_{3} & g_{4} \\
\hline \psi & 0 & 0 & 1+2 \omega-\omega^{2} & 1-\omega+2 \omega^{2}
\end{array}
$$

Express ψ as a linear combination of $\chi_{1}, \ldots, \chi_{4}$. Is ψ a character of G ?

2 Differential manifolds, Lie groups, and Lie algebras

1. Differentiable structure on the real line

Let \mathbb{R} be the real line with the differentiable structure given by the maximal atlas containing the chart $(\mathbb{R}, \varphi=i d: \mathbb{R} \rightarrow \mathbb{R})$, and let \mathbb{R}^{\prime} be the real line with the differentiable structure given by the maximal atlas containing the chart $\left(\mathbb{R}^{\prime}, \psi: \mathbb{R}^{\prime} \rightarrow \mathbb{R}\right)$, where $\psi(x)=x^{1 / 3}$.
(a) Show that these two differentiable structures are distinct.
(b) Show that there exists a diffeomorphism between \mathbb{R} and \mathbb{R}^{\prime}. The two differentiable structures are thus equivalent.

2. Vector spaces as differentiable manifolds

Let V be a d-dimensional real vector space. Let $\left\{e_{i}\right\}$ be a set of basis vectors for V, with dual basis $\left\{u_{i}\right\}$. Let $p \in V$, and $X \in T_{p} V$.
(a) Explain why the dual basis defines global coordinate functions on V.
(b) Write down an isomorphism between $T_{p} V$ and V.
(c) Assume X has the expansion

$$
X=\left.\sum_{i=1}^{d} a_{i} \frac{\partial}{\partial u_{i}}\right|_{p}
$$

in terms of the basis of $T_{p} V$ induced by the coordinate functions u_{i}. Let $\left\{\tilde{e}_{i}\right\}$ be a second set of basis vectors for V, with $e_{i}=\sum_{j=1}^{d} A_{i j} \tilde{e}_{j}, i=1, \ldots, d$. By acting on a C^{∞} function $f \in \mathcal{F}_{p}$, find the expression for X in the basis induced by the dual basis $\left\{\tilde{u}_{i}\right\}$ to $\left\{\tilde{e}_{i}\right\}$.
(d) By considering the two expressions for X thus obtained, prove that the isomorphism you introduced above between $T_{p} V$ and V is basis independent.

3. Lie algebra structure on \mathbb{R}^{2}

(a) Let $(x, y),(v, w) \in \mathbb{R}^{2}$. Define the bracket

$$
[(x, y),(v, w)]=(0, x w-y v) .
$$

Show that $\left(\mathbb{R}^{2},[\cdot, \cdot]\right)$ defines a Lie algebra.
(b) Let \mathfrak{g} be a 2-dimensional Lie algebra, spanned by basis vectors $\{e, f\}$ satisfying $[e, f]=f$. Prove that it is isomorphic as a Lie algebra to the one above.
(c) Prove that up to isomorphism, only two different Lie algebra structures can be imposed on the vector space \mathbb{R}^{2}.

4. Homomorphisms between Lie groups induce homomorphisms between Lie algebras

Let $\varphi: G \rightarrow H$ be a Lie group homomorphism. Then

$$
d \varphi: T_{e_{G}} G \rightarrow T_{e_{H}} H
$$

as $\varphi\left(e_{G}\right)=e_{H}$. By means of the natural identifications $\mathfrak{g} \cong T_{e_{G}} G, \mathfrak{h} \cong T_{e_{H}} H, d \varphi$ thus induces a linear transformation of \mathfrak{g} into \mathfrak{h}, which we also call $d \varphi$:

$$
d \varphi: \mathfrak{g} \rightarrow \mathfrak{h} .
$$

(a) Explain why for a given $X \in \mathfrak{g}, d \varphi(X)$ thus defined is the unique left-invariant vector field on H such that

$$
d \varphi(X)\left(e_{H}\right)=d \varphi\left(X\left(e_{G}\right)\right)
$$

(b) Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h} respectively, and let $\varphi: G \rightarrow H$ be a Lie group homomorphism. Prove the following:
i. X and $d \varphi(X)$ are φ-related for any $X \in \mathfrak{g}$.
ii. The mapping $d \varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ is a Lie algebra homomorphism.

