

ICFP Masters program École Normale Supérieure

M1 (Fall/Winter 2015/2016)

Final Exam: Mathematical Aspects of Symmetries in Physics

This exam is closed book, closed notes. It consists of three pages. You have 3 hours. Carefully justify each step in your reasoning. Good luck!

1 Finite groups and representations

1. Conjugacy classes

Let G denote a finite group. Recall that x^G denotes the equivalence class of $x \in G$ with regard to conjugation, and Z(G) denotes the center of G.

- (a) Prove that $|x^G| = 1 \Leftrightarrow x \in Z(G)$.
- (b) Prove the following equation, known as the *class equation*: Let x_1, \ldots, x_l be representatives of the conjugacy classes of G. Then

$$|G| = |Z(G)| + \sum_{x_i \notin Z(G)} |x_i^G|.$$

- (c) Let p be a prime number (in French: nombre premier), and let n be a positive integer. Suppose that G is a group of order p^n .
 - i. Use the class equation to show that $Z(G) \neq \{e\}$.
 - ii. Suppose that $n \ge 3$ and that |Z(G)| = p. Prove that G has a conjugacy class of size p.

2. Equivariance, one dimensional representations

- (a) Let (ρ_V, V) and (ρ_W, W) be two representations of a finite group G, and $\varphi : V \to W$ an invertible equivariant map. Let $\{v_i\}$ and $\{w_j\}$ be sets of basis vectors of V, W respectively. Let $\mathcal{M}^V, \mathcal{M}^W, \mathcal{M}^{\varphi}$ be the matrix representations of the functions ρ_V, ρ_W, φ with regard to the respective bases. Express \mathcal{M}^W in terms of \mathcal{M}^V and \mathcal{M}^{φ} .
- (b) Let $\rho_1, \rho_2 : G \to \mathbb{C} \{0\}$ be one-dimensional representations of a finite group G. Show that ρ_1 is equivalent to ρ_2 if and only if $\rho_1 = \rho_2$.
- (c) Let G be a finite group.
 - i. Let $g \in G$. Prove that the set $\{g^1, g^2, \ldots, g^n\}$ for an appropriate positive integer n carries a group structure. Characterize the minimal such n. It is called the order of the element g.
 - ii. Let ρ be a one-dimensional representation of the group G, and suppose that $g \in G$ has order n. Show that $\rho(g)$ is an n^{th} -root of unity.
 - iii. Construct n inequivalent one-dimensional representations of the group $\mathbb{Z}/n\mathbb{Z}$.
 - iv. Explain why no further one-dimensional representations of $\mathbb{Z}/n\mathbb{Z}$ exist.

3. Characters

(a) A certain group G of order 12 is known to have a total of four conjugacy classes, with representatives g_1, \ldots, g_4 . Three of its four irreducible characters take the following values:

g_i	$g_1 = e$	g_2	g_3	g_4
$ C_G(g_i) $	12	4	3	3
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
χ_3	1	1	ω^2	ω

We have here denoted $\omega = e^{2\pi i/3}$. Note that beneath each representative g_i of a conjugacy class, we have given the order of the corresponding centralizer. Using the appropriate orthogonality relation of characters, find the complete character table of G. Justify each entry for χ_4 .

(b) Let ψ be the class function on G taking the following values:

Express ψ as a linear combination of χ_1, \ldots, χ_4 . Is ψ a character of G?

2 Differential manifolds, Lie groups, and Lie algebras

1. Differentiable structure on the real line

Let \mathbb{R} be the real line with the differentiable structure given by the maximal atlas containing the chart $(\mathbb{R}, \varphi = id : \mathbb{R} \to \mathbb{R})$, and let \mathbb{R}' be the real line with the differentiable structure given by the maximal atlas containing the chart $(\mathbb{R}', \psi : \mathbb{R}' \to \mathbb{R})$, where $\psi(x) = x^{1/3}$.

- (a) Show that these two differentiable structures are distinct.
- (b) Show that there exists a diffeomorphism between \mathbb{R} and \mathbb{R}' . The two differentiable structures are thus equivalent.

2. Vector spaces as differentiable manifolds

Let V be a d-dimensional real vector space. Let $\{e_i\}$ be a set of basis vectors for V, with dual basis $\{u_i\}$. Let $p \in V$, and $X \in T_pV$.

- (a) Explain why the dual basis defines global coordinate functions on V.
- (b) Write down an isomorphism between T_pV and V.
- (c) Assume X has the expansion

$$X = \sum_{i=1}^{d} a_i \frac{\partial}{\partial u_i}|_p$$

in terms of the basis of T_pV induced by the coordinate functions u_i . Let $\{\tilde{e}_i\}$ be a second set of basis vectors for V, with $e_i = \sum_{j=1}^d A_{ij}\tilde{e}_j$, $i = 1, \ldots, d$. By acting on a C^{∞} function $f \in \mathcal{F}_p$, find the expression for X in the basis induced by the dual basis $\{\tilde{u}_i\}$ to $\{\tilde{e}_i\}$.

(d) By considering the two expressions for X thus obtained, prove that the isomorphism you introduced above between T_pV and V is basis independent.

3. Lie algebra structure on \mathbb{R}^2

(a) Let $(x, y), (v, w) \in \mathbb{R}^2$. Define the bracket

$$[(x, y), (v, w)] = (0, xw - yv).$$

Show that $(\mathbb{R}^2, [\cdot, \cdot])$ defines a Lie algebra.

- (b) Let \mathfrak{g} be a 2-dimensional Lie algebra, spanned by basis vectors $\{e, f\}$ satisfying [e, f] = f. Prove that it is isomorphic as a Lie algebra to the one above.
- (c) Prove that up to isomorphism, only two different Lie algebra structures can be imposed on the vector space R².

4. Homomorphisms between Lie groups induce homomorphisms between Lie algebras

Let $\varphi: G \to H$ be a Lie group homomorphism. Then

$$d\varphi: T_{e_G}G \to T_{e_H}H$$

as $\varphi(e_G) = e_H$. By means of the natural identifications $\mathfrak{g} \cong T_{e_G}G$, $\mathfrak{h} \cong T_{e_H}H$, $d\varphi$ thus induces a linear transformation of \mathfrak{g} into \mathfrak{h} , which we also call $d\varphi$:

$$d\varphi:\mathfrak{g}\to\mathfrak{h}$$
.

(a) Explain why for a given $X \in \mathfrak{g}$, $d\varphi(X)$ thus defined is the unique left-invariant vector field on H such that

$$d\varphi(X)(e_H) = d\varphi(X(e_G)).$$

- (b) Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h} respectively, and let $\varphi : G \to H$ be a Lie group homomorphism. Prove the following:
 - i. X and $d\varphi(X)$ are φ -related for any $X \in \mathfrak{g}$.
 - ii. The mapping $d\varphi: \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism.