
Master ENS ICFP first year

Relativistic Quantum Mechanics and Introduction to Quantum Field Theory

Final exam : January 17, 2018 – duration : 4 hours

• The different problems are completely independent.

• Problems 1, 2 and 4 are related to the first part of the lectures ”Relativistic Quantum Mechanics”,

and problems 3 and 5 to the second part of the lectures ”Introduction to Quantum Field Theory”.

• The number of points indicated for each problem is just an approximative indication of the im-

portance of the problem. The final weight of each may still be adjusted differently.

• Only the notes from the lectures and the exercice sessions (TDs) and your personal notes are

authorised. Computers, pocket calculators, and all electronic devices are forbidden.

• It is mandatory to use the same conventions as in the lectures (and as in the lecture notes), in

particular, the signature of a space-time is (−1,+1, . . . ,+1).

• You may write in English or French.

Good luck !

Problem 1 : Energy levels of a relativistic charged spin-0 particle in a

constant magnetic field (5 points)

Consider a relativistic spin-0 particle of mass m and electric charge q in a static uniform magnetic

field ~B = B~ey.

1-a) Write the corresponding relativistic wave-equation using a vector potential whose only non-

vanishing component is Az.

1-b) Determine the corresponding stationary solutions and their energies E = E(n, k) where n is

an integer and k a continuous parameter. Explicitly give the (un-normalised) wave functions and

discuss the degeneracies of the spectrum. (You should use basic results from your non-relativistic

quantum mechanics course, without re-deriving them, about the harmonic oscillator with potential
m
2
ω2x2 , in particular that the eigenfunctions are given by ϕn(x) ∼ e−mωx

2/2Hn(
√
mωx).)

1-c) Exhibit the non-relativistic limit of the energies (Landau levels) and explicitly give the first

relativistic corrections.

1-d) Briefly discuss how the solutions would change if one uses a different vector potential ~A.
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Problem 2 : The axial current (5 points)

The classical action for a classical Dirac field ψ in the presence of a classical electromagnetic field

Aµ is

S =

∫
d4xψ(x)

(
− ∂/+ iqA/(x)−m

)
ψ(x) , (1)

where, as always, ∂/ = γµ∂µ, A/ = γµAµ and ψ = ψ†iγ0. Consider the so-called axial transformation

ψ(x)→ eiεγ5 ψ(x) , (2)

with a constant real parameter ε.

2-a) Show that eiεγ5γµ = γµe−iεγ5 , and determine the corresponding transformation of ψ(x).

2-b) Show that the action S is invariant under these (simultaneous) transformations of ψ and ψ

if and only if m = 0. For m = 0, determine the corresponding Noether current jµ5 (x) (i.e. the

corresponding conserved current as given by Noether’s theorem). This jµ5 (x) is called the axial

current.

2-c) Write down the Dirac equations for ψ(x) and for ψ (for non-vanishing mass m) and explicitly

check that ∂µj
µ
5 is proportional to m, confirming again that the axial current is conserved if and

only if m = 0.

Problem 3 : The current density for spin-12 particles (7 points)

When studying the Dirac equation in chapter 6, an important feature was that it admitted a con-

served current density jµ(x) = iψ(x)γµψ(x), satisfying ∂µj
µ = 0, such that j0(x) ≡ ρ(x) is non-

negative and thus could be interpreted as a probability density. However, in quantum field theory,

the corresponding normal-ordered current operator is Jµ(x) = i : Ψ(x)γµΨ(x) : , where Ψ(x) is the

quantum Dirac field, and Jµem = qJµ is the corresponding electromagnetic current density (q is the

elementary charge of the particle) which is such that J0
em(x) should take positive and negative values

depending whether it acts on particle or anti-particle states.

Recall (or admit) that the spinors u and v satisfy the following orthonormality conditions:

u†(~p, σ1)u(~p, σ2) = v†(~p, σ1)v(~p, σ2) = δσ1σ2 , u†(~p, σ1)v(−~p, σ2) = v†(−~p, σ1)u(~p, σ2) = 0 . (3)

3-a) Show that indeed j0(x) ≥ 0.

3-b) Write out J0(x) in terms of the creation and annihilation operators, and similarly for

Q =
∫

d3x J0(x). Explain why this no longer is a non-negative operator.

3-c) Explicitly compute Qa†(~p, σ) |0〉, Qa†c(~p, σ) |0〉 and Qa†(~p1, σ1) a†(~p2, σ2) a†c(~p3, σ3) |0〉.
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Problem 4 : Weakly relativistic limit of the Dirac equation and spin-orbit

coupling (8 points)

Consider the Dirac equation for a spin-1
2

particle of electric charge q in a spherically symmetric

electrostatic potential A0(t, ~x) ≡ V (r), and no magnetic field so that ~A = 0. One wants to study a

weakly relativistic situation and identify the first relativistic corrections to the two-component Pauli

equation. We assume that everywhere in space |qV (r)| � m.

4-a) Recall the Dirac representation of the Dirac γ-matrices and write out the Dirac equation for a

stationary wave-function of positive energy E = m+ ε written as

ψ(t, ~x) = e−i(m+ε)t

(
ϕ(~x)

χ(~x)

)
. (4)

4-b) Eliminate χ and get an exact equation for ϕ which one can write as

HP ϕ(~x) = ε ϕ(~x) , (5)

where HP is a differential operator of the form HP = f(~x) + (−i~σ · ~∇)g(~x)(−i~σ · ~∇) with (possibly

ε-dependent) functions f and g one determines. Here (−i~σ · ~∇) ≡ ~σ · ~P is meant to be a differential

operator that acts on everything to its right.

4-c) Develop g(~x) in powers of 1
m

and show that

HP = qV (r) +
(~σ · ~P )2

2m
− 1

4m2
~σ · ~P

(
ε− qV (r)

)
~σ · ~P +O(

ε2

m3
) . (6)

4-d) Use the commutator of ~σ · ~P and (ε− qV (r)) and remark that, to the order we work, one can

use (ε− qV (r))ϕ = P 2

2m
ϕ to re-write

HP =
~P 2

2m
− (~P 2)2

8m3
+ qV (r) +Hspin−orbit +O(

ε2

m3
) , (7)

with

Hspin−orbit =
a(r)

m2
~S · ~L+

i

m2
~P · ~r b(r) , (8)

where you will explicitly give the functions a(r) and b(r).
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Problem 5 : Electron-neutrino scattering (15 points)

Neutrinos, just as electrons, can be described by a spin-1
2

Dirac field, but of vanishing mass. We call

Ψe(x) the quantum field of the electron and Ψn(x) the quantum field of the neutrino. The electron

(and its anti-particle, the positron) interact with the neutrino (and the anti-neutrino) via a coupling

to a charged massive spin-1 particle W+ and its anti-particle W− with corresponding quantum field

V µ(x). The interaction Hamiltonian density is

Hint(x) = ig : Ψe(x)γµ(1− γ5)Ψn(x)V †µ (x) : +h.c. , (9)

where +h.c. indicates to add the hermitian conjugate expression and g is a real coupling constant.

In this exercice, we will be interested in the scattering of an electron and a neutrino.

5-a) Explicitly write out the terms +h.c..

5-b) Using the notations

ae− and a†e− for the annihilation and creation operators for the electron,

ae+ and a†e+ for the annihilation and creation operators for the positron,

an and a†n for the annihilation and creation operators for the neutrino,

an and a†n for the annihilation and creation operators for the anti-neutrino,

bW+ and b†W+ for the annihilation and creation operators for the W+ (particle),

bW− and b†W− for the annihilation and creation operators for the W− (anti-particle),

identify the combinations of creation and annihilation operators in Hint that will be relevant to

the process of the scattering of an electron and a neutrino, i.e. for a process where the initial and

final states both contain one electron and one neutrino. Verify that these combinations preserve the

electric charge.

5-c) Give the Feynman rules in momentum space for this theory : Write out the propagators for the

electron-positron (mass m, drawn as a solid line), for the neutrino-anti-neutrino (drawn as a dotted

line) and for the W± (mass M , use the covariant form, drawn as a wavy line). Give the interaction

vertex / vertices. Give some of the factors for initial and final particles (e.g. for a final anti-neutrino

and for an initial W−).

5-d) Draw the Feynman diagram(s), that contribute(s) to the lowest non-trivial order in perturbation

theory, for the scattering of an initial electron (~p1, σ1) and an initial neutrino (~p2, σ2) to a final

electron (~p′1, σ
′
1) and a final neutrino (~p′2, σ

′
2).

5-e) Write out the corresponding S-matrix element. (Abbreviate u(~p1, σ1) simply as u(1), etc.)

5-f) Assuming from now on that m � M , show that the corresponding M -matrix element is

approximately

Me:1,n:2→e:1′,n:2′ '
g2

(2π)3

u(2′)γµ(1− γ5)u(1)u(1′)γµ(1− γ5)u(2)

(p1 − p′2)2 +M2
. (10)

5-f) Indicate in a few lines (without actually doing the computation) how to obtain the corresponding

unpolarised differential cross section dσ
dΩcm

in the center of mass frame.
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