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B [est 2014-2015

* The proposed exercises do not require long technical developments.

* A few questions refer to general understanding, irrespective of the
problem at hand. Try to keep the answers concise.

The purpose of this exercise is to analyse the geometric properties
of a four-dimensional space-time M equipped with the metric
(=1

ds? = —df? +dr? + (b2 + 1’2) <d192 + sin? 19d¢2), (1.1)

where b is a constant, r € R, ¢ € [0, 7[ and ¢ € [0, 277[. We will not
be interested in the nature of the sources required for making this
geometry a solution of Einstein’s equations.

1. Which are the isometries of (1.1)? Give their number and their
qualitative features — do not display explicitly the associated
Killing fields.

2. Consider now the two-dimensional space-like surface S defined
by t = tg and & = 7/2.

(a) Why studying this surface can provide a faithful characteri-
zation of the whole space-time?

(b)  Write the metric of S, dX2.
¢ In the natural basis at hand, determine the Christoffel sym-
bols, the components of the corresponding Riemann and
Ricci tensors, as well as the scalar curvature.
¢ How many independent components does the curvature
have?

3. In order to acquire a better picture of the geometry of S, it is
desirable to embed it inside three-dimensional Euclidean space
Es.

(a) o Isevery two-dimensional space-like surface embeddable
in E3?
¢ Are there specific relationships that must hold between
curvatures?
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* Do you know any (counter-)example?

(b) Consider Ej in cylindrical coordinates with Euclidean metric
ds? = do? + ¢*d¢? + dz?,

0€Ry, e [0,2n] and z e R.

* Determine the coordinate transformation ¢ = ¢(r) as well as
the function z = z(r) that defines an embedded surface S,
for which the induced metric is the above dX?.

* Recast this surface as ¢ = ¢(z) and plot this function,
showing the regions with positive and negative r. What
happens for vanishing b?

* Draw a picture of the surface S inside E3 (including the
angle ¢). Exhibit its asymptotically flat regions. Justify the
name of wormhole geometry connecting two mirror universes
given to (1.1).

4. We now turn to geodesic motion in the wormhole geometry
(1.1).
(a) Enumerate the conserved quantities.
(b) Justify why radial (i.e. at constant & and ¢) geodesics exist.

(c) A point-like traveller starting from r = R with radial initial
velocity u” = —U < 0 falls freely and radially (u® = u? = 0).
What is the proper-time lapse At needed for going through
the wormhole throat and reaching the mirror point r = —R?

1. Show that for any conformal Killing vector field ¢ with scale
factor O

v)\vy‘:v = Rp,\wgp + gyva/\Q + g/\vayQ - gman.

2. Conclude that the maximal number of conformal and plain

* A plain Killing is a particular case of Kﬂlirlg1 vector fields is %(Vl +2)(n+1).
a conformal Killing.

1. The aim of the present is to prove that (c = 1)

ds? = —(1+A2%22)de? + _dz + (1 — /\2y2> dx® + _d
1+ A222 1—A2y2
A = pxdy+gqtdz
* Vacuum means without matter solve Einstein-Maxwell vacuum equations® for appropriate val-
sources, charges or currents. ues of the constants p and g in terms of the arbitrary constant A.

The use of Cartan formalism in orthonormal frame is highly recom-
mended.



(a) Define the orthonormal coframe and determine the spin
connection as well as the curvature two-form.

(b) Extract the Riemann tensor components in the frame at hand
and determine the Ricci.

(c) Compute the Maxwell field F and its Hodge-dual «F.

(d) Check Maxwell’s equations (written in the most convenient
form).

(e) Compute the electromagnetic energy—momentum tensor.
(f) Impose Einstein’s equations (c = G = 1) and conclude.

. Bonus. Prove that for a general Maxwell field, the energy—
momentum tensor components read:

1
Ty = 5= (PM A be) . (1.2)

GENERAL RELATIVITY 7
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The proposed exercises do not require long technical developments.
Sometimes a few words are enough to justify an expression.

A few questions refer to general understanding, irrespective of the
specific problem. Try to keep the answers concise.

e Reminder:

V,AY = ﬁ@, (v/Ig1A"),

ViVewf = ViVl =R, wh,

e We set here c = 1.

Raychaudhury equation describes the focusing properties of geodesic
congruences. It has important implications in the context of singu-
larity theorems of Hawking, Penrose. .. We will here study the case
of light, and thus consider a null congruence

1= 0o, "¢, =0.

This is assumed to be geodesic (auto-parallel), not necessarily
affinely parameterized though:

0V, 00 = k(M) 0¥,

where A is the parameter along the lines — affine iff « = 0. The
aim of the exercise is to determine the variation of the congruence
expansion @ (defined below) with A, i.e.

d v
5 @=0'Vv.0.

The central object in this study is the rank-2 tensor B = V1, with
components

B;ﬂ/ = 6;4;1/ = vl/gy (2.1)

(beware of the index positions — there is no symmetry). As usual,
guv are the components of the metric, and the connection is Levi-
Civita.
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2.1.1

2.1.2

The orthogonal spatial surface

1. The vector 1 does not allow to define a normal projector as hj, =

8+ £ul”. Why?

. We thus need to introduce a complementary vector n = n* J,

such that

n-n=0 n-1=-1, (2.2)

and define the symmetric tensor of components

S’,“/ == gVV + g},{nv + lefv
{ (23)

v sv v v . _ M
sy—6y+€yn +n, " with s =gy.

(a) Show that
SP“/ZV = Syvnv = 0,
vo_ Vo P oV
Sy = Sppst’ = S Sps
s = syush’ = 2.

(b) Interpret s‘}’, and u; defined as

vo_ v v
Uy = éyn nyt.

Hint: for the latter act on 1 and n, compute its square and its
trace, add it up to sj,.

The variation along A

. Show that

"By =0,
0By = Ky

. From the congruence variation By, given in Eq. (2.1) one defines

buy = sﬁ sy Bpo-

(a) Show that it obeys

Sﬁb/\v = Sﬁby/\ = b;w/
bl = 0Fbyy = buyn? = ntbyy = 0.

What do we learn on by, from these properties?

(b) Show its explicit relationship with By,
buy = By + £unPByy + Bugn’ Ly + £,6,nPn By
(c) Compute its square (beware of the index positions):

bﬂvbyy = BHVBUH - Kz.
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3. The spatial transverse variation b, can be decomposed into the
trace (expansion), the symmetric (shear) and the antisymmetric
(vorticity) pieces:

1
by = EG)SW + Oy + Wy, (2.4)

where by definition
O = s"by,.

One can easily prove that the vorticity w vanishes iff 1 is hypersurface-
orthogonal.

(a) Show that the expansion is given by
© =g"By — Kk =V, 0" —«. (2.5)
(b) Using its definition via (2.4), show that the shear is traceless:
8o =0,
soyy = 0.

(c) Show that the square is decomposed as

1
Dby = 50 + 01 — Wy
When non-vanishing, what is the sign of 0y, ¢"" and w,yw""?

4. Demonstrate the Raychaudhury equation

d
dA

1
© = —Ryl'l" + k@ — 50 — 00! + ww.|  (2.6)

Hint: Compute directly the derivative and use the commutation
rule for covariant derivatives, as well as the various formulas
established above.

The Painlevé-Gullstrand coordinates T, 7, ¥, ¢ are obtained from the
original Schwarzschild coordinates by setting

dt =dT +

dr
NETN

The metric becomes non-diagonal and reads:

2
ds? = —dT? + (dr+ ﬁdT) 412 (dﬂz + sinzﬁd(pz) .

A sample of Christoffel symbols is

T (2m/r)¥? m2m—r)
Urr="—— FTTT—*T/ [0 =T =0.

11
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PR Radial geodesics

1. Write down the fwo first-order equations (as done in the course,
in the framework of Lagrangian formalism) that describe radial
geodesic motion with affine parameter. Call k = +1,0,—1 the
parameter discriminating massive particles, light and tachyons;
call £ the “energy”. The describing parameter is proper time T
for massive objects, and a parameter A for light. The dot will be
the derivative with respect to that parameter.

2. (a) What initial conditions (i.e. at spatial infinity » — o) do
guarantee T = 1 for an incoming massive particle?

(b) What is thus the interpretation of the coordinate T? Does
anything happen across the horizon? Why?

3. Consider now the congruence of incoming radial light rays.
(a) Show that these obey

-

_ T dr
T_ TO - _Sr[) 1+,/2m,'

(b) Write the tangent vector 1 = (¥ 0, (leave r as an implicit
function of A). Determine its dual form 1 = £, dx" and show it

is hypersurface-orthogonal.

(c) Find the vector field n obeying Egs. (2.2), find its dual form
and determine the corresponding s, following Eq. (2.3).

(d) Determine the expansion ® (Eq. (2.5)) of the light congru-
ence tangent to 1. Are the light rays at hand converging or
diverging? What happens at the horizon? What happens at
the Schwarzschild singularity?

(e) Using the Raychaudhury equation (2.6), determine ¢y, 0"".
What can we conclude about ¢;,,,?
PR Light rays on the horizon
Consider now the congruence tangent to the vector k = 0r.

1. Show that this congruence is hypersurface-orthogonal. Deter-

" Do not perform explicitly the 7- mine® S(T,r) such that the hypersurfaces S(T,r) = sy be orthogo-

integral.

nal to k.

2. Explain why this congruence is geodesic on the horizon. Show
that it is non-affinely parameterized.

3. Using this congruence compute the surface gravity on Schwarzschild
horizon.
4. Without any computation, determine V ,k,) and V,k".

5. Can we use in this case the formalism developed in Sec. 2.1.2 for
computing the expansion ® and its variation along the congru-
ence?
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» The proposed exercises do not require long technical developments. We
set here c = 1.

* The covariant and Lie derivative of a rank-2 tensor read:
VoKuy = 6pKyw =T, Kov =T, Kyor,

EvK]ﬂ/ = 'UpapK],ﬂ/ + Kg'yayvg + K‘ug'ayvo-.

» The Christoffel symbols for the three-dimensional Euclidean metric in
spherical coordinates {r, 9, p},

A% = dr? + 72 (@0 + sin 9 dg?)
are

r _ r _ s 2
FM——r, F(M,——rsm 9,

rﬂm = %, Fﬁw = —sindcos ¥,
1"4),4, = %, 1"4)194) = cotd.

* The third-degree equation
X34 px+q=0
with negative discriminent A = 4p® + 27¢, admits 3 real solutions:

cosf,

y:q/—%x cos (6 + %),

Ccos (9 + %"),

where

Towards a binary system

EBE®a [xirinsic curvature

Consider a spacetime manifold M foliated as UserZy. If {x/, i =1,2,3}
are coordinates on % equipped with the metric

de* = v;;dx'dy, (3.1)
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the four-dimensional spacetime metric of M reads generally:

ds? = —N2d# + 7 (dxi n Bidt) (dxf n det) , (3.2)

n— % (at - Biai)

is the normalized timelike vector, orthogonal to the leaves ;. One

where

also introduces B; = ')f,-]-Bj . Finally, one defines
AZ = ‘SZ +ny,n', (3-3)

and the extrinsic curvature tensor of X;:

1
_*A]e Ay Lngpo- (3-4)

Kyv = 2

1. Show that A displayed in (3.3) is the orthogonal projector on %,
and compute its components in terms of N and B'.

2. Show that the spatial components of the extrinsic curvature (3.4)
are given by

K;

1
i = "oN (Orvij — LBij) »

where Lg7 is understood as the three-dimensional Lie derivative
of the three-dimensional metric (3.1), along a three-dimensional
vector B = B¢;.

3. Consider the Schwarzschild metric in ordinary coordinates,

ds? = (1 - 2:”) dr? +

r (d192 + sin? 19d(p2> . (3.5)
This defines a foliation for which you are invited to

(a) determine N, B and 7,
(b) compute Kj;.

4. The Gullstrand-Painlevé coordinates {T,r, 9, ¢} are obtained
from the original Schwarzschild coordinates by setting

dt =dT +

mm

The metric now reads:

2
ds? = —dT? + (dr +4/ Z:ndT> + 72 <d192 + sin? ﬁdgoz) .

The latter defines a slightly different foliation for which the same
questions are asked:

(a) determine N, B and 7,
(b) compute Kj;.
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EB®N  T)he ADM mass

Assume a spacetime metric expressed as a foliation (3.2) with radial
coordinate r such that

vij = fij + O (), Oryij = o fij+ O (Yr?),
Kij =0 (/?), oKij=0(/r),

where f;; is the Euclidean flat three-dimensional metric.' Under ! Caution: in general, the coordinates x!
are not Cartesian. Hence the Christof-

these assumptions Arnowitt, Deser and Misner defined a conserved ,
fel symbols of f;; # J;j do not vanish.

charge called ADM mass, which coincides with other definitions,
when available:

1 .
Mapm = e § ds; &',

5%

where

¢ the integral is performed over the two-sphere at spatial infinity
S2, = lim, o0 0%;

e the measure on 52 is dS; = 1/2\/]76‘1‘]7{ dx A dxk;

e &'is computed as a three-dimensional object on flat space,? V; * Indices are lowered and raised with
fij and its inverse f/: here 7/ =

being the Levi-Civita covariant derivative associated with f;;: L L
fEf ke and v = foy5.

£ = Uiyl — Vigk,.

In this expression3 it is advised to keep only the leading orders in 3 Note that this coincides with the
expression displayed in the lecture

inverse powers of r since ultimately » — oo.
P y notes, when fj; = §;;.
1. Compute Mapym for Schwarzschild solution in ordinary coordi-

nates (3.5).

2. Repeat te computation in Gullstrand-Painlevé coordinates (3.6)
and comment the result.

3. For a binary system, the initial condition (metric on %) obeying
the constraint subset of Einstein’s equations reads:

de? = ¥4 f; dx'dy,

where f;; is again the Euclidean flat three-dimensional metric,

and
X1 1%

T
[F=al  [7-2

with ¢ the location of the black holes on X. It is convient to

Y=1

work in spherical coordinates.

(a) Compute the ADM mass of this system.

(b) Chose ¢; = 0 so that the coordinate system is centered on the
first black hole. Hence ¢, = 71,. Assume that one is exploring
the vicinity of the first black hole, i.e. r « 713, and define

i

p=—.

r
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i. Show that

2 4o &y 2, 2( 902 L 2 2

ds ~(1+ P 1+r12 [dp +p <d19 +sin”“ ddg )]

ii. Read off the value of the mass of the first black hole. What
is the binding energy of the system?

The purpose of this exercise is to show that in Kerr geometry there
exists two photon circular orbits in the equatorial plane (¢ = 7/2),
one direct and one retrograde with respect to the rotation of the
black hole. If one relaxes the equatorial condition, further non-

4 The interested reader can find more planar orbits exist, confined on a sphere called the photon sphere.#
on this subject in Spherical photon orbits
around a Kerr black hole, E. Teo, General
Relativity and Gravitation (2003) 35 A

2

The Kerr metric reads:

2 2
1909. ds? = [df — asin® l9dg0] + %drz

+del92 + Sngliﬁ [a dt — <r2 + a2) dgo]z,

where

A=7r*+a®—2mr, o*=r1*+a*cos®d.

For convenience, the inverse metric is also displayed:

4mr (r2+a?) (2r%+a2+a? cos(28) —4mr)

gtt =_1— g‘p(l’ =
(r2+aZ—2mr) (2r2+a2+a? cos(29))’ sin® 9(r2-+a2—2mr) (2r2+a2+a2 cos(29))’
tp _ _ dmra 9% _ 1 ro_ r2+a®—2mr
8 (r2+a2—2mr)(2r2+a2+a2 cos(28))’ g 2ot 8’ S r2+a2 cos? ¢°

One assumes
0<a<m.

The orbits of any point-like test particle are labeled by the con-
served quantities & and .Z, as defined and used in the lecture
notes. One will assume without proof that ¢ = 7/2 solves the -

5 Caution: do not delve into second- Euler-Lagrange equation of motion.>
order Euler-Lagrange equations.

1. Show that circular orbits obey

d rr [ PP p2 ot tt @2 _
g7 (g7 22 —2grzE +5"6%)| = 0, (o)
g% 20 28 +gME* = 0 (3.7)

with

—2m(L —a&)? + (L* —a?E%)r — &3

A T
3 d 8 r(a% + 12 —2mr)

2. The properties of these orbits are obtained in 3 steps:

(a) Using Eq. (3.6) compute their radius 7. as a function of m, a
and

X = % +a. (3.8
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(b) Determine x from Eq. (3.7).

(c) Putting everything together, find the 2 admissible radiuses
r¥ associated with the direct and retrograde photons respec-

tively. Discuss the a2 — 0 limit.

. Show that for equatorial photons on circular orbits, the orbital
period in coordinate time is given by

<z

. What is the orbital period of a photon as measured by a static
observer sitting at the photon orbital radius around a supermas-
sive Schwarzschild black hole. The data are as follows:

e M =4x10° Mg with Mg ~ 1.99 x 10% kg the solar mass,
« G~667x10711 20

kgs2”’

* c~299x 108 & (to be appropriately restored).

17
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¢ The proposed exercises do not require long technical develop-
ments. The longest (like 14, 15 or 19) should not exceed half a
page each.

* The Riemann tensor of a metric and torsionless connection obeys
the Bianchi identities. In components, these are

R" =0, V

I
[vpo] AR

=0.

[A™ v|po]

¢ The components of the Weyl tensor for a metric and torsionless
(Levi-Civita) connection in n dimensions read:

1
Cuvpr = Ruypr = — (8o Rve + 8voRyp = 8upRyur — guoRup)

1
+mR (gﬂpgvcr - gvpg;m) .

e The Cartan formalism in a natural frame (6* = dx") leads to the
following equations for a Levi—Civita connection:

dgu = wyy + wyy with wyy = gypwpv,

wh, Adx? = 0.

Caution: since in the natural frame dg,, # 0, wy is not antisym-
metric.

¢ Consider a one-parameter () family of geodesics x# = x#(1,0)
with T an affine parameter along the curves. The velocity com-

onents are ut = M, whereas the components of the deviation
p oT p

vector are s = %. The deviation acceleration reads:
21
w_ D<s

T T R o uf's”.

The Einstein equations in four spacetime dimensions are 10 second-
order partial-differential equations for the spacetime metric. Al-
ternatively, they are algebraic equations for 10 out of the 20 com-
ponents of the Riemann tensor, namely those of the Ricci tensor
(we assume Levi-Civita connection). The remaining 10 compo-
nents of the Weyl tensor are not determined algebraically from the
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sources, but rather obey a differential equation following Einstein’s
equations. The purpose of this exercise is to set and interpret this
equation. We work in arbitrary spacetime dimension #.

The Schouten tensor is defined algebraically from the Ricci ten-
sor and the curvature scalar:

1 1
P =373 (RW B 2(n—1)RgP‘”> '

Show the following expressions:

1. VuR" e = VoRys — VoRyp and V,RY; = 1V, R;
2. Cyvptr = Ruvpo — §upPvo — §voPup + §vpPuc + §uoPup;
3. VPl = gy VeR and V,Cypp = (1 = 3) (VoPuy — Vo Pyp).

Using Einstein’s equations:

4. prove

871G
V;tcyvpa: A ]vpm (4.1)

where

n—3 1
]VpU’ = n_2 VPTVU' - VUTvp a1 (va/\,\ Evo — VU'TA)\ gvp)] ;

5. interpret Eq. (4.1).

We will here focus on four-dimensional spacetimes equipped with a
line element ds? and a Levi-Civita connection.

Metrics with a covariantly constant null vector

Let us assume that ds?> admits a nowhere vanishing and regular,
parallel i.e. covariantly constant, null vector k = k*d,:

Vuk' =0, kyk' =0

with k, = gvk" the components of the associated form k = k,dz",
in a coordinate system z#, u = 0,...,3. Show the following;:

6. kis a Killing vector — do not confuse k with k;
7. Lyk = 0 ie. the form k is invariant along the vector k;
8. the form k is closed.

Hence, one can find a function u(z) such that locally

9. Show that



The function u(z) is therefore constant along the integral lines of
the vector field k. Together with the function r along these lines

defined as

kzar/

GENERAL RELATIVITY

(4.2)

u can be adopted in a new coordinate system {u, 7, x' = x,x? = y}.
The latter will be used until the end.

10. Justify why, in this coordinate system, the metric at hand reads:

ds? = 2dudr + K(u, x, y)du® + 2A;(u, x, y)dx'du + gij(u, x, y)dxidy.

The coordinate r leading to this form is not unique.

11. Show that under

r—r+Au,xy),

the metric (4.3) is form-invariant with

12. Provide a heuristic argument, inspired by two-dimensional

K — K+20,A(u,x,y),
Ai — Ai + 0iA(u, x, ).

(4-3)

electromagnetism, to explain why A; can be set to zero without

loss of generality.

The resulting metric captures many of the remarkable solutions to

Einstein’s equations, such as Robinson-Trautman, Kundt or pp-

waves.

ey The gravitational pp-waves

The pp-wave metric is obtained assuming that the two-dimensional
spatial section at constant r and u is Euclidean space:

This leads to

8ij(1, x,y)dx'dx! = §dx'dxl = da® + dy”.

ds? = 2dudr + K(u, x, y)clu2 +dx? + dy2,

(4-4)

representing a plane-fronted gravitational wave propagating along
the parallel rays tangent to the vector field k.

13. Write the inverse-metric components g for (4.4) and the rela-
tionship among the components v* and v, of a vector v and its
associated form v = g(v). These will be useful throughout the

exercise.

14. In the non-orthonormal natural frame {0* = du, 0" = dr, ol =
dxt,i = 1,2}, show that the spin-connection elements

]

wh =l = wi, =w', =0,
", = 3dK = 1 (0,Kdu + 0;Kdx'),

21
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obey the metricity and torsionless conditions.

15. The non-vanishing elements of the curvature two-form are R';
and R/,. Compute them and show that

1
Ryiju = E(91.2].1<,

(92
Oxiox

where (31-2]- =

16. Show that the only non-vanishing components of the Ricci and
of the Weyl tensors are respectively

1

1 1
Ruu = =5 (K +2,K) and  Cuju = > <61-2]-K — 20 |k + 6§yKD .

2

17. Display Einstein’s vacuum equations for the pp-waves. What is
the remarkable property they satisfy?

One usually defines the following functions:

Aoy, x,y) = % (632”1( + 5§yK) ,
Ar(u,x,y) = % ((?,%xK — (9@1() ,
Ax(u,x,y) = 3,K.
These allow to express and interpret the geodesic deviation inside

a one-parameter geodesic congruence x/(t, o) describing point-like
test masses free-falling inside the pp-wave gravitational field.

18. Compute the geodesic-deviation acceleration vector compo-
nents a*,a",a'.

* The dot stands for the 7-derivative 19. Choose a gauge where 1 = 1 and u’ = 0,* and show that
and the prime for o-derivative.

@ ta = J L) A0+ I )AL R A
a¥—a¥ = 3 (' —y) Ao+ 3 (¢ +y) Ay — 3 (¥ —y)Ax

20. Interpret Egs. (4.5), making the distinction between vacuum
and non-vacuum pp-wave solutions.

The plane waves in Brinkmann coordinates

Quadratic functions K(u, x,y),

K(u,x,y) = %Ki]-(u)xixj,

define a subclass of pp-waves dubbed plane waves. The coordinate
system in use is known as Brinkmann'’s.

21. What are now vacuum Einstein’s equations?
22. Consider the following configuration:
ny = Kﬁ(u), Kyx = Kyy =0 (4-6)

with x an arbitrary constant. Does (4.6) solve Einstein’s equa-
tions? How would you interpret it?



GENERAL RELATIVITY

A gravitational plane wave has extra symmetries, besides the origi-
nal one generated by the null Killing vector field k.

23. Show that the following vector fields:

. dFfi
&= f'(u)o;— 5ijxl£@r/ (4.7)
are Killing for any solution f(u) of the harmonic-oscillator equa-
tion -
asft 1 ;
Fr 551 Kij(u) f'.

It can be shown that this equation possesses 4 linearly independent
solutions and that the 5 Killing fields k and ¢, Egs. (4.2) and (4.7),
obey the Heisenberg algebra.

23
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¢ The proposed exercises do not require long technical develop-
ments. The longest (23) does not exceed one page.

* Bold typefaces as u designate vectors, forms or more general ten-
sors. The context makes the meaning clear. Anyway, the indices
appearing in the components can be lowered or raised at wish
using the metric tensor.

* The connection will always be metric and torsionless i.e. Levi-
Civita.

* The fully antisymmetric tensor has components 779123 = /g
with g the absolute value of the metric determinant, whereas

7123 = 1/ g

* Geodesics will always be affinely parameterized.

® Useful integrals (valid for x > 1):

Yx Vr+1 v VE+1
del\gx—zﬁ—ln\/;_l, del_f/xzzﬁ(ng)ﬂn\/;_l.

e Cartan’s formalism in orthonormal frame leads to the following
equations for a Levi-Civita connection:

Wap + Wy = 0 with wgpy = 17500,
do” + w?, A 6" =0,

where w”; are the elements of the spin-connection one-form.
The curvature two-form is given by the second Cartan structure
equation:

R, = dw'), + W' A W,

e Further formulas — Christmas homework. The Kerr metric reads:

A 2 o?
ds®> = z [cdt—asinzﬁd(p] +%dr2

+02d9* + 512219 [ac dt — (r2 + az) Ol(P]2 /

where
A =1 4 a® —2mr, Qz =12 4 4% cos? 0.
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More explicitly, one finds:

2 2mra’ 2
oo = —1+ g Sop = (72 +a’+ % sin® 19) sin® 9, 80p = —

Asusual x0 = ctand m = MG/¢2. For convenience, the inverse
metric is also displayed:

00 dmr (r* + a?)
g =-1- :
(12 +a% —2mr) (2r2 + a? + a® cos(29))
oo _ (21 + a* + a® cos(20) — 4mr)
 sin? 9 (r2 + a2 — 2mr) (212 + a2 + a2 cos(20))
Q% — 4dmra

(12 + a2 — 2mr) (2r% + a2 + a2 cos(29))

Setting the stage

In general relativity we must define carefully the local frames with
respect to which measurements are made. These frames are ma-
terialized in a time-like congruence %, tangent to a vector field u.
The later may or may not be geodesic, and it is associated with the
velocity field of a family of observers. These usually carry another
set of three space-like vectors e;, i = 1,2,3 forming with ey = #/c

a tetrad i.e. a local frame, which for convenience is often chosen
orthonormal:

€€y, = Hap, Cl,b=0,1,2,3.

The associated coframe is as usual 8* with 6°(e;) = i,0" = J;, and
allows to express the background metric as

ds? = 17,,0°0".

In practice, the space-like triads are realized with gyroscopes.
A vector field u has acceleration a4 and vorticity two-form ¢

defined as:

1

a=Vyu, tp:2<du+clzu /\a>. (5.1)

One also defines the vorticity one-form as the Hodge—Poincaré dual
of u A :
Q==xunryp).

1. Show that the vector field u is hypersurface-orthogonal iff 2 = 0.
2. Show that the components of (2 read: ()7 = %uylpvpﬂwpa.

3. Prove

Ve,6° = —0%ig, 0",

Hint: use Leibniz rule.

mra
2
Y

sin? 9.
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LRy [ree-falling observers and application to Schwarzschild
We assume the congruence % be geodesic.

4. Show that if two vector fields v and w are parallelly transported
along %, then their scalar product v - w is constant along ;.
Conclude that a free-falling observer can carry parallelly without
obstruction an orthonormal local frame e, with ey = #/c.

In Schwarzschild geometry,
2
2_ (118 2ar e T L 2467 4 sin? 0 do?
ds? = (1 r)cdtJrl_rrngr (ow +sin ﬂd(p),

the time-like geodesics obey (the dot is the derivative with respect
to proper time 7):

(5-2)
We consider observers moving inwards on a radial congruence
tangent to the vector field

1 7
u= 1_2@—4/7%,.

r

5. Show (using Egs. (5.2)) that the congruence %, at hand is geodesic,
and determine £ and £. What is the kinematical state of the con-
sidered observers at radial infinity?

6. For the geodesics 6, determine the functions r(t) and #(r),
assuming that the observer is at r — 400 whent — —co0 and
T — —o.

7. When do these observers reach the horizon, in coordinate and in

proper time?

Together with this vector field e; = #/c, we define three extra

space-like’ mutually orthogonal and norm-1 vector fields: * Space-like and time-like refer in this
discussion to the asymptotic region
e ! Oor+ 0, e ! Oy, e ! 0 r>Tg
- Ory = - 7 = p . ’
! EO BT T T sing ?

1
T T T~ Tnec
VE-VE
8. Show that the coframe dual to e, is

0! = cdt + ;dr, 0 = r—gcdt+ %dr, 0% = rdd, 679 = rsin 9d .
7 g r 1— -2

- - r
l’g r

Alternatively

cdt——t o1 g, ar—_\["Beter, dao-l6® dp— — o0
1_" r [rg r r rsind
A/rg V1

r

The independent spin-connection elements are

r _ 1 [Tsgr 9 _ s oo 9 _ 1p0
wt—z 739, wt—— 739, w,—;e,

¢ _ Ty ¢ _ 1 ¢ _ cotd
Wy == 7304)/ w,—;e(/), Wiy = ro(P'
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2 Interested students are welcome to
check the following publications:

9. Prove that % are parallelly transported along %;. Be careful:
the proof fits in two lines, using appropriately the already established
results.

In summary, we have at our disposal a congruence of free-falling
observers carrying parallelly orthonormal tetrads — since 6% are
parallelly transported so are their duals e, (we knew it already for
ey = cu because 6, was proven to be geodesic).

10. Show that u is hypersurface orthogonal, and determine the
equation of the corresponding hypersurface in the form T'(x) =
To (Tp is an arbitrary constant).

From this point on, it would be natural to define Fermi normal
coordinates (often abusively called Riemann normal coordinates)
around a given geodesic of the congruence. These include the
proper time along the geodesic, and three spatial coordinates de-
fined inside the above hypersurface, whose lines are tangent to
the e;s at the geodesic. We will not delve into this quite technical
subject.?

e F. K. Manasse and E ¢
C. W. Misner, Fermi normal — nergy measurements

coordinates and some basic concepts in
differential geometry, J. Math. Phys. 4
(1963) 735;

e D. Bini, A. Geralico and R. T.
Jantzen, Fermi coordinates in
Schwarzschild spacetime: closed
form expressions, Gen. Rel. Grav. 43
(2011) 1837, arXiv:1408.4947 [gr-qc].

In the above setup, a radial photon comes from infinity with mo-
mentum p = pocdt + p,dr. This photon is captured by the free-
falling observer at r, who measures its energy Eg .

11. We define E = —cpp. Why is E conserved along the photon
trajectory, and what is its meaning? Determine p,. Be careful: the
photon is falling inwards.

12. Compute Eg,. Compare with the energy E, that would have
measured an observer af rest at the same location r. Explain the
difference.

Accelerated observers

Often observers are accelerated, as are ordinary people at rest or
astronauts flying in rockets. These can still carry gyroscopes, and
the concept of (no longer parallelly) transported tetrads should be
made mathematically sound.

Given an accelerated congruence %, tangent to a normalized
vector field u (i.e. |u*> = —c?) with acceleration 4, one defines the
Fermi derivative along u of any vector field v as follows:

Div = Vo + clz (a(v-u)—u(v-a))

or, in components
F_u v U 1 UV UV
D,o" =u"V,v +C2(avuv—uvav).

A vector field is transported a la Fermi—Walker along a congru-
ence %y if its Fermi derivative vanishes along the vector field u.


https://arxiv.org/abs/1408.4947
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14. Show that any vector u# such that u|> = —c?is always self-
Fermi-Walker-transported.

15. Show that if v is orthogonal to u along %, then D} is also
orthogonal to u.

16. Show that if two vectors v and w are Fermi-Walker-transported
along a vector u, then their scalar product v - w is constant along
every orbit of the congruence .

In summary, any observer of a family can carry an orthonormal
local frame, consisting of the velocity field ey = #/c and three space-
like Fermi-Walker-transported vectors e;, i = 1,2, 3.

We further impose that Fermi derivative (i) obeys Leibniz rule
for tensor or contracted tensor product, and (ii) coincides for scalar
functions f with the ordinary directional derivative: DEf = V, f =

u(f).

17. Show that for a one-form w = w;dx"
F v 1 v v
Dyw, = u'Vyw, + 2 (apwyu’ — uywya’). (5.3)
Tip: start with w, o for arbitrary vV

18. Rewrite (5.3) in terms of the vorticity of # defined in (5.1).

Using Leibniz rule, the Fermi derivative can be generalized to any
tensor, and for any tensor Fermi-Walker transport along a congru-
ence ¢, demands vanishing Fermi derivative along the vector field
u.

Back to Schwarzschild from hovering observers

A hovering observer3 is at rest at fixed “altitude” r and celestial 3 None of the quantities u, e,, 8, w
introduced here should be confused

. . . . . . : . with those already met for free-falling
gines in order to resist against falling. Assuming he is skilled and observers.

inclination ¢, ¢. He needs for that a spacecraft with powerful en-

succeeds, his canonically normalized velocity vector will be

u

I
S
-

We assume having a whole set of such observers filling the sky, and
defining a genuine continuous congruence .

Given e; = ¥/c, it is natural to define a new orthonormal coframe
as

0t =, /1— r7gcdt, 0= ——dr, 0°=1rdd, 09 =rsin vdg.

19. Determine the spatial frame vectors e,, s and e, (read them off
without much computation).

20. Using Cartan’s formalism, determine the independent spin-
connection elements:
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Be systematic: compute d6°, a = t,r, 9, ¢, express them in terms of 6,
read off the spin connection. Each element turns out to be single-term.
The other two independent elements w®, and w?, vanish.

21. Compute the acceleration form a = a,8”. Determine its norm
a = +/aba,. How would you interpret it? What happens at the
horizon? Renormalize the blue-shift divergence of a by appropri-
ate multiplication. What is the renormalized acceleration at the
horizon, a,(rg)?

22. Prove that the coframe tetrad is Fermi-Walker-transported
along €. Again: do not embark in long technicalities.

23. Determine the independent elements of the curvature two-
form:

thr Rﬂt/ Rﬂrr R(Ptr R(Pr/ R(Pg

(each contains at the end a single and simple term).

General properties

Killing vectors § = "0, provide the mean for constructing con-
served quantities for geodesic motion, which are linear in the ve-
locity of the point-like free-falling object: {*u,. This is Ncether’s
theorem.

We work here in natural frames.

e Killing tensors are symmetric, rank-n tensor fields K with compo-
nents KV1-Vn = K(V1-¥1) obeying

V(yKvl...vn) -0

e Killing—Yano tensors are antisymmetric, rank-n tensor fields y (i.e.
n-forms) with components vy, .., = Y[y, ...,,] Obeying

V). =0

24. Show that the scalar K17y, ... u,, is conserved along geodesics.

25. Give a trivial example for a rank-2 Killing tensor, always
present. What is the corresponding conserved quantity along
geodesics?

26. Show that the n — 1-form with components i,y is parallelly
transported along geodesics.

27. Suppose y be a rank-2 Killing—Yano tensor with components
Yuv- Show that Ky, = yyp Ypv are the components of a rank-2
Killing tensor. Tip: write explicitly V , K, ;) = 0.
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el Kerr geometry — Christmas homework

A less trivial rank-2 Killing tensor is available in Kerr’s rotating
black-hole solution. This was discovered in 1968 by Brandon Carter,
demonstrating thereby that geodesic motion (and other field equa-

tions) was integrable in that background.4 For that purpose, one +B. Carter, Hamilton—Jacobi and
Schrodinger separable solutions of Ein-

introduces two vector fields: - )
stein’s equations, Commun. Math. Phys.

72 + a2 a 10 (1968) 280.
{ = A at+a,+gaq,,
% + a? A a
= O — b+ =0,
2Cp2 t 2P2 r+ sz [

28. Show that £ and k are light-like vectors with £-k = —1.

29. Show that
KM = p? (0K + 07K") + r2gh

are the components of a Killing tensor.

30. What happens in the limit of vanishing a?
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