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1 Test 2014-2015

• The proposed exercises do not require long technical developments.

• A few questions refer to general understanding, irrespective of the
problem at hand. Try to keep the answers concise.

1.1 The wormhole geometry

The purpose of this exercise is to analyse the geometric properties
of a four-dimensional space–time M equipped with the metric
(c “ 1)

ds2 “ ´dt2 ` dr2 `
´

b2 ` r2
¯´

dϑ2 ` sin2 ϑdϕ2
¯

, (1.1)

where b is a constant, r P R, ϑ P r0, πr and ϕ P r0, 2πr. We will not
be interested in the nature of the sources required for making this
geometry a solution of Einstein’s equations.

1. Which are the isometries of (1.1)? Give their number and their
qualitative features – do not display explicitly the associated
Killing fields.

2. Consider now the two-dimensional space-like surface S defined
by t “ t0 and ϑ “ π{2.

(a) Why studying this surface can provide a faithful characteri-
zation of the whole space–time?

(b) • Write the metric of S , dΣ2.

• In the natural basis at hand, determine the Christoffel sym-
bols, the components of the corresponding Riemann and
Ricci tensors, as well as the scalar curvature.

• How many independent components does the curvature
have?

3. In order to acquire a better picture of the geometry of S , it is
desirable to embed it inside three-dimensional Euclidean space
E3.

(a) • Is every two-dimensional space-like surface embeddable
in E3?

• Are there specific relationships that must hold between
curvatures?
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• Do you know any (counter-)example?

(b) Consider E3 in cylindrical coordinates with Euclidean metric

ds2 “ d$2 ` $2dϕ2 ` dz2,

$ P R`, ϕ P r0, 2πr and z P R.

• Determine the coordinate transformation $ “ $prq as well as
the function z “ zprq that defines an embedded surface S ,
for which the induced metric is the above dΣ2.

• Recast this surface as $ “ $pzq and plot this function,
showing the regions with positive and negative r. What
happens for vanishing b?

• Draw a picture of the surface S inside E3 (including the
angle ϕq. Exhibit its asymptotically flat regions. Justify the
name of wormhole geometry connecting two mirror universes
given to (1.1).

4. We now turn to geodesic motion in the wormhole geometry
(1.1).

(a) Enumerate the conserved quantities.

(b) Justify why radial (i.e. at constant ϑ and ϕ) geodesics exist.

(c) A point-like traveller starting from r “ R with radial initial
velocity ur “ ´U ă 0 falls freely and radially (uϑ “ uϕ “ 0).
What is the proper-time lapse ∆τ needed for going through
the wormhole throat and reaching the mirror point r “ ´R?

1.2 Isometries and conformal isometries

1. Show that for any conformal Killing vector field ξ with scale
factor Ω

∇λ∇µξν “ Rρ
λµνξρ ` gµνBλΩ` gλνBµΩ´ gµλBνΩ.

2. Conclude that the maximal number of conformal and plain
Killing1 vector fields is 1

2 pn` 2qpn` 1q.1 A plain Killing is a particular case of
a conformal Killing.

1.3 Solving Einstein–Maxwell equations

1. The aim of the present is to prove that (c “ 1)

ds2 “ ´
`

1` λ2z2˘dt2 `
dz2

1` λ2z2 `
´

1´ λ2y2
¯

dx2 `
dy2

1´ λ2y2

A “ p x dy` q t dz

solve Einstein–Maxwell vacuum equations2 for appropriate val-2 Vacuum means without matter
sources, charges or currents. ues of the constants p and q in terms of the arbitrary constant λ.

The use of Cartan formalism in orthonormal frame is highly recom-
mended.
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(a) Define the orthonormal coframe and determine the spin
connection as well as the curvature two-form.

(b) Extract the Riemann tensor components in the frame at hand
and determine the Ricci.

(c) Compute the Maxwell field F and its Hodge-dual ˚F.

(d) Check Maxwell’s equations (written in the most convenient
form).

(e) Compute the electromagnetic energy–momentum tensor.

(f) Impose Einstein’s equations (c “ G “ 1) and conclude.

2. Bonus. Prove that for a general Maxwell field, the energy–
momentum tensor components read:

Tab “
1

8π

´

Fac F c
b ` ˚Fac ˚ F c

b

¯

. (1.2)





2 Test 2015-2016

• The proposed exercises do not require long technical developments.
Sometimes a few words are enough to justify an expression.

• A few questions refer to general understanding, irrespective of the
specific problem. Try to keep the answers concise.

• Reminder:

∇ν Aν “ 1?
|g|
Bµ

`a

|g|Aµ
˘

,

∇µ∇νwρ ´∇ν∇µwρ “ Rρ
λµνwλ.

• We set here c “ 1.

2.1 Raychaudhury equation for null geodesic congruences

Raychaudhury equation describes the focusing properties of geodesic
congruences. It has important implications in the context of singu-
larity theorems of Hawking, Penrose. . . We will here study the case
of light, and thus consider a null congruence

l “ `µ Bµ, `µ`µ “ 0.

This is assumed to be geodesic (auto-parallel), not necessarily
affinely parameterized though:

`ν ∇ν`
µ “ κpλq `µ,

where λ is the parameter along the lines – affine iff κ “ 0. The
aim of the exercise is to determine the variation of the congruence
expansion Θ (defined below) with λ, i.e.

d
dλ

Θ “ `ν ∇νΘ.

The central object in this study is the rank-2 tensor B “ ∇l, with
components

Bµν “ `µ;ν “ ∇ν`µ (2.1)

(beware of the index positions – there is no symmetry). As usual,
gµν are the components of the metric, and the connection is Levi–
Civita.
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2.1.1 The orthogonal spatial surface

1. The vector l does not allow to define a normal projector as hν
µ “

δν
µ ` `µ`ν. Why?

2. We thus need to introduce a complementary vector n “ nµ Bµ

such that

n ¨ n “ 0, n ¨ l “ ´1, (2.2)

and define the symmetric tensor of components

sµν “ gµν ` `µnν ` nµ`ν

õ

sν
µ “ δν

µ ` `µnν ` nµ`
ν with s “ sµ

µ.

(2.3)

(a) Show that
$

’

’

&

’

’

%

sµν`ν “ sµνnν “ 0,

sν
µ “ sµρsρν “ sρ

µ sν
ρ,

s “ sµνsµν “ 2.

(b) Interpret sν
µ and uν

µ defined as

uν
µ “ ´`µnν ´ nµ`

ν.

Hint: for the latter act on l and n, compute its square and its
trace, add it up to sν

µ.

2.1.2 The variation along λ

1. Show that
$

&

%

`µBµν “ 0,

`νBµν “ κ `µ.

2. From the congruence variation Bµν given in Eq. (2.1) one defines

bµν “ sρ
µ sσ

ν Bρσ.

(a) Show that it obeys
$

&

%

sλ
µbλν “ sλ

ν bµλ “ bµν,

bµν`ν “ `µbµν “ bµνnν “ nµbµν “ 0.

What do we learn on bµν from these properties?

(b) Show its explicit relationship with Bρσ:

bµν “ Bµν ` `µnρBρν ` Bµσnσ`ν ` `µ`νnρnσBρσ.

(c) Compute its square (beware of the index positions):

bµνbνµ “ BµνBνµ ´ κ2.
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3. The spatial transverse variation bµν can be decomposed into the
trace (expansion), the symmetric (shear) and the antisymmetric
(vorticity) pieces:

bµν “
1
2

Θsµν ` σµν `ωµν, (2.4)

where by definition
Θ “ sµνbµν.

One can easily prove that the vorticity ω vanishes iff l is hypersurface-
orthogonal.

(a) Show that the expansion is given by

Θ “ gµνBµν ´ κ “ ∇ν`
ν ´ κ. (2.5)

(b) Using its definition via (2.4), show that the shear is traceless:
$

&

%

gµνσµν “ 0,

sµνσµν “ 0.

(c) Show that the square is decomposed as

bµνbνµ “
1
2

Θ2 ` σµνσµν ´ωµνωµν.

When non-vanishing, what is the sign of σµνσµν and ωµνωµν?

4. Demonstrate the Raychaudhury equation

d
dλ

Θ “ ´Rµν`
µ`ν ` κΘ´

1
2

Θ2 ´ σµνσµν `ωµνωµν. (2.6)

Hint: Compute directly the derivative and use the commutation
rule for covariant derivatives, as well as the various formulas
established above.

2.2 Schwarzschild in Painlevé–Gullstrand coordinates

The Painlevé–Gullstrand coordinates T, r, ϑ, ϕ are obtained from the
original Schwarzschild coordinates by setting

dt “ dT`
dr

a

2m{r´
a

r{2m
.

The metric becomes non-diagonal and reads:

ds2 “ ´dT2 `

˜

dr`

c

2m
r

dT

¸2

` r2
´

dϑ2 ` sin2 ϑ dϕ2
¯

.

A sample of Christoffel symbols is

ΓT
TT “

p2m{rq
3{2

2r
, Γr

TT “ ´
mp2m´ rq

r3 , Γϑ
TT “ Γϕ

TT “ 0.
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2.2.1 Radial geodesics

1. Write down the two first-order equations (as done in the course,
in the framework of Lagrangian formalism) that describe radial
geodesic motion with affine parameter. Call k “ `1, 0,´1 the
parameter discriminating massive particles, light and tachyons;
call E the “energy”. The describing parameter is proper time τ

for massive objects, and a parameter λ for light. The dot will be
the derivative with respect to that parameter.

2. (a) What initial conditions (i.e. at spatial infinity r Ñ 8) do
guarantee 9T “ 1 for an incoming massive particle?

(b) What is thus the interpretation of the coordinate T? Does
anything happen across the horizon? Why?

3. Consider now the congruence of incoming radial light rays.

(a) Show that these obey
$

&

%

9r “ ´E ,

T´ T0 “ ´
şr

r0
dr

1`
?

2m{r
.

(b) Write the tangent vector l “ `µ Bµ (leave r as an implicit
function of λ). Determine its dual form l “ `µ dxµ and show it
is hypersurface-orthogonal.

(c) Find the vector field n obeying Eqs. (2.2), find its dual form
and determine the corresponding sµν following Eq. (2.3).

(d) Determine the expansion Θ (Eq. (2.5)) of the light congru-
ence tangent to l. Are the light rays at hand converging or
diverging? What happens at the horizon? What happens at
the Schwarzschild singularity?

(e) Using the Raychaudhury equation (2.6), determine σµνσµν.
What can we conclude about σµν?

2.2.2 Light rays on the horizon

Consider now the congruence tangent to the vector k “ BT .

1. Show that this congruence is hypersurface-orthogonal. Deter-
mine1 SpT, rq such that the hypersurfaces SpT, rq “ s0 be orthogo-1 Do not perform explicitly the r-

integral. nal to k.

2. Explain why this congruence is geodesic on the horizon. Show
that it is non-affinely parameterized.

3. Using this congruence compute the surface gravity on Schwarzschild
horizon.

4. Without any computation, determine ∇pµkνq and ∇µkµ.

5. Can we use in this case the formalism developed in Sec. 2.1.2 for
computing the expansion Θ and its variation along the congru-
ence?
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• The proposed exercises do not require long technical developments. We
set here c “ 1.

• The covariant and Lie derivative of a rank-2 tensor read:

∇ρKµν “ BρKµν ´ Γσ
ρµKσν ´ Γσ

ρνKµσ,

LvKµν “ vρBρKµν ` KσνBµvσ ` KµσBνvσ.

• The Christoffel symbols for the three-dimensional Euclidean metric in
spherical coordinates tr, ϑ, ϕu,

d`2 “ dr2 ` r2
´

dϑ2 ` sin2 ϑ dϕ2
¯

,

are

Γr
ϑϑ “ ´r, Γr

ϕϕ “ ´r sin2 ϑ,

Γϑ
rϑ “

1
r , Γϑ

ϕϕ “ ´ sin ϑ cos ϑ,

Γϕ
rϕ “

1
r , Γϕ

ϑϕ “ cot ϑ.

• The third-degree equation

x3 ` px` q “ 0

with negative discriminent ∆ “ 4p3 ` 27q2, admits 3 real solutions:

y “

c

´
4p
3
ˆ

$

’

’

&

’

’

%

cos θ,

cos
`

θ ` 2π
3

˘

,

cos
´

θ ` 4π
3

¯

,

where

cos 3θ “ ´q

d

´
27

4p3 .

3.1 Towards a binary system

3.1.1 Extrinsic curvature

Consider a spacetime manifold M foliated as YtPRΣt. If
 

xi, i “ 1, 2, 3
(

are coordinates on Σt equipped with the metric

d`2 “ γij dxidxj, (3.1)
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the four-dimensional spacetime metric of M reads generally:

ds2 “ ´N2dt2 ` γij

´

dxi ` Bidt
¯´

dxj ` Bjdt
¯

, (3.2)

where
n “

1
N

´

Bt ´ BiBi

¯

is the normalized timelike vector, orthogonal to the leaves Σt. One
also introduces Bi “ γijBj. Finally, one defines

∆ν
µ “ δν

µ ` nµ nν, (3.3)

and the extrinsic curvature tensor of Σt:

Kµν “ ´
1
2

∆ρ
µ ∆σ

ν Lngρσ. (3.4)

1. Show that ∆ν
µ displayed in (3.3) is the orthogonal projector on Σt,

and compute its components in terms of N and Bi.

2. Show that the spatial components of the extrinsic curvature (3.4)
are given by

Kij “ ´
1

2N
`

Btγij ´LBγij
˘

,

where LBγ is understood as the three-dimensional Lie derivative
of the three-dimensional metric (3.1), along a three-dimensional
vector B “ BiBi.

3. Consider the Schwarzschild metric in ordinary coordinates,

ds2 “ ´

ˆ

1´
2m
r

˙

dt2 `
dr2

1´ 2m
r
` r2

´

dϑ2 ` sin2 ϑ dϕ2
¯

. (3.5)

This defines a foliation for which you are invited to

(a) determine N, Bi and γij,

(b) compute Kij.

4. The Gullstrand–Painlevé coordinates tT, r, ϑ, ϕu are obtained
from the original Schwarzschild coordinates by setting

dt “ dT`
dr

a

2m{r´
a

r{2m
.

The metric now reads:

ds2 “ ´dT2 `

˜

dr`

c

2m
r

dT

¸2

` r2
´

dϑ2 ` sin2 ϑ dϕ2
¯

.

The latter defines a slightly different foliation for which the same
questions are asked:

(a) determine N, Bi and γij,

(b) compute Kij.
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3.1.2 The ADM mass

Assume a spacetime metric expressed as a foliation (3.2) with radial
coordinate r such that

γij “ fij `O p1{rq , Brγij “ Br fij `O p1{r2q ,

Kij “ O p1{r2q , BrKij “ O p1{r3q ,

where fij is the Euclidean flat three-dimensional metric.1 Under 1 Caution: in general, the coordinates xi

are not Cartesian. Hence the Christof-
fel symbols of fij ‰ δij do not vanish.

these assumptions Arnowitt, Deser and Misner defined a conserved
charge called ADM mass, which coincides with other definitions,
when available:

MADM “
1

16πG

¿

S2
8

dSi E i,

where

• the integral is performed over the two-sphere at spatial infinity
S2
8 “ limrÑ8 BΣt;

• the measure on S2
8 is dSi “ 1{2

a

f εijk dxj ^ dxk;

• E i is computed as a three-dimensional object on flat space,2 ∇̄i
2 Indices are lowered and raised with
fij and its inverse f ij: here γij “

f ik f j`γk` and γk
k “ f ijγij.

being the Levi–Civita covariant derivative associated with fij:

E i “ ∇̄jγ
ij ´ ∇̄iγk

k.

In this expression3 it is advised to keep only the leading orders in 3 Note that this coincides with the
expression displayed in the lecture
notes, when fij “ δij.

inverse powers of r since ultimately r Ñ8.

1. Compute MADM for Schwarzschild solution in ordinary coordi-
nates (3.5).

2. Repeat te computation in Gullstrand–Painlevé coordinates (3.6)
and comment the result.

3. For a binary system, the initial condition (metric on Σ0) obeying
the constraint subset of Einstein’s equations reads:

d`2 “ Ψ4 fij dxidxj,

where fij is again the Euclidean flat three-dimensional metric,
and

Ψ “ 1`
α1

}~r´~c1}
`

α2

}~r´~c2}

with ~c1,2 the location of the black holes on Σ0. It is convient to
work in spherical coordinates.

(a) Compute the ADM mass of this system.

(b) Chose ~c1 “ 0 so that the coordinate system is centered on the
first black hole. Hence ~c2 “~r12. Assume that one is exploring
the vicinity of the first black hole, i.e. r ! r12, and define

ρ “
α2

1
r

.
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i. Show that

d`2 «

ˆ

1`
4α1

ρ

ˆ

1`
α2

r12

˙˙

”

dρ2 ` ρ2
´

dϑ2 ` sin2 ϑ dϕ2
¯ı

.

ii. Read off the value of the mass of the first black hole. What
is the binding energy of the system?

3.2 The photon sphere of Kerr black hole

The purpose of this exercise is to show that in Kerr geometry there
exists two photon circular orbits in the equatorial plane (ϑ “ π{2),
one direct and one retrograde with respect to the rotation of the
black hole. If one relaxes the equatorial condition, further non-
planar orbits exist, confined on a sphere called the photon sphere.44 The interested reader can find more

on this subject in Spherical photon orbits
around a Kerr black hole, E. Teo, General
Relativity and Gravitation (2003) 35
1909.

The Kerr metric reads:

ds2 “ ´
∆
$2

”

dt´ a sin2 ϑ dϕ
ı2
`

$2

∆
dr2

`$2dϑ2 `
sin2 ϑ

$2

”

a dt´
´

r2 ` a2
¯

dϕ
ı2

,

where
∆ “ r2 ` a2 ´ 2mr, $2 “ r2 ` a2 cos2 ϑ.

For convenience, the inverse metric is also displayed:

gtt “ ´1´
4mrpr2`a2q

pr2`a2´2mrqp2r2`a2`a2 cosp2ϑqq
, gϕϕ “

p2r2`a2`a2 cosp2ϑq´4mrq
sin2 ϑpr2`a2´2mrqp2r2`a2`a2 cosp2ϑqq

,

gtϕ “ ´ 4mra
pr2`a2´2mrqp2r2`a2`a2 cosp2ϑqq

, gϑϑ “ 1
r2`a2 cos2 ϑ

, grr “ r2`a2´2mr
r2`a2 cos2 ϑ

.

One assumes
0 ď a ă m.

The orbits of any point-like test particle are labeled by the con-
served quantities E and L , as defined and used in the lecture
notes. One will assume without proof that ϑ “ π{2 solves the ϑ-
Euler–Lagrange equation of motion.55 Caution: do not delve into second-

order Euler–Lagrange equations.
1. Show that circular orbits obey

d
dr

”

grr
´

gϕϕL 2 ´ 2gϕtL E ` gttE 2
¯ı

“ 0, (3.6)

gϕϕL 2 ´ 2gϕtL E ` gttE 2 “ 0 (3.7)

with

gϕϕL 2´2gϕtL E ` gttE 2 “
´2mpL ´ aE q2 `

`

L 2 ´ a2E 2˘ r´ E 2r3

r
`

a2 ` r2 ´ 2mr
˘ .

2. The properties of these orbits are obtained in 3 steps:

(a) Using Eq. (3.6) compute their radius rc as a function of m, a
and

x “
L

E
` a. (3.8)
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(b) Determine x from Eq. (3.7).

(c) Putting everything together, find the 2 admissible radiuses
r˘c associated with the direct and retrograde photons respec-
tively. Discuss the a Ñ 0 limit.

3. Show that for equatorial photons on circular orbits, the orbital
period in coordinate time is given by

T “ 2π

ˇ

ˇ

ˇ

ˇ

L

E

ˇ

ˇ

ˇ

ˇ

.

4. What is the orbital period of a photon as measured by a static
observer sitting at the photon orbital radius around a supermas-
sive Schwarzschild black hole. The data are as follows:

• M “ 4ˆ 106 Md with Md « 1.99ˆ 1030 kg the solar mass,

• G « 6.67ˆ 10´11 m3

kg s2 ,

• c « 2.99ˆ 108 m
s (to be appropriately restored).





4 Test 2017-2018

• The proposed exercises do not require long technical develop-
ments. The longest (like 14, 15 or 19) should not exceed half a
page each.

• The Riemann tensor of a metric and torsionless connection obeys
the Bianchi identities. In components, these are

Rµ

rνρσs
“ 0, ∇

rλ
Rµ

ν|ρσs
“ 0.

• The components of the Weyl tensor for a metric and torsionless
(Levi–Civita) connection in n dimensions read:

Cµνρσ “ Rµνρσ ´
1

n´ 2
`

gµρRνσ ` gνσRµρ ´ gνρRµσ ´ gµσRνρ

˘

`
1

pn´ 1qpn´ 2q
R
`

gµρgνσ ´ gνρgµσ

˘

.

• The Cartan formalism in a natural frame (θµ “ dxµ) leads to the
following equations for a Levi–Civita connection:

$

&

%

dgµν “ ωµν `ωνµ with ωµν “ gµρω
ρ
ν,

ω
µ

ν ^ dxν “ 0.

Caution: since in the natural frame dgµν ‰ 0, ωµν is not antisym-
metric.

• Consider a one-parameter (σ) family of geodesics xµ “ xµpτ, σq

with τ an affine parameter along the curves. The velocity com-
ponents are uµ “ Bxµ

Bτ , whereas the components of the deviation
vector are sµ “ Bxµ

Bσ . The deviation acceleration reads:

aµ ”
D2sµ

Bτ2 “ Rµ
νρσuνuρsσ.

4.1 The Schouten tensor and propagation of gravity

The Einstein equations in four spacetime dimensions are 10 second-
order partial-differential equations for the spacetime metric. Al-
ternatively, they are algebraic equations for 10 out of the 20 com-
ponents of the Riemann tensor, namely those of the Ricci tensor
(we assume Levi–Civita connection). The remaining 10 compo-
nents of the Weyl tensor are not determined algebraically from the
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sources, but rather obey a differential equation following Einstein’s
equations. The purpose of this exercise is to set and interpret this
equation. We work in arbitrary spacetime dimension n.

The Schouten tensor is defined algebraically from the Ricci ten-
sor and the curvature scalar:

Pµν “
1

n´ 2

ˆ

Rµν ´
1

2pn´ 1q
Rgµν

˙

.

Show the following expressions:

1. ∇µRµ
νρσ “ ∇ρRνσ ´∇σRνρ and ∇µRµ

σ “
1
2∇σR;

2. Cµνρσ “ Rµνρσ ´ gµρPνσ ´ gνσPµρ ` gνρPµσ ` gµσPνρ;

3. ∇µPµ
σ “

1
2pn´1q∇σR and ∇µCµ

νρσ “ pn´ 3q
`

∇ρPνσ ´∇σPνρ

˘

.

Using Einstein’s equations:

4. prove

∇µCµ
νρσ “

8πG
c4 Jνρσ, (4.1)

where

Jνρσ “
n´ 3
n´ 2

„

∇ρTνσ ´∇σTνρ ´
1

n´ 1

´

∇ρTλ
λ gνσ ´∇σTλ

λ gνρ

¯



;

5. interpret Eq. (4.1).

4.2 The pp-waves

We will here focus on four-dimensional spacetimes equipped with a
line element ds2 and a Levi–Civita connection.

4.2.1 Metrics with a covariantly constant null vector

Let us assume that ds2 admits a nowhere vanishing and regular,
parallel i.e. covariantly constant, null vector kkk “ kµBµ:

∇µkν “ 0, kµkµ “ 0

with kµ “ gµνkν the components of the associated form k “ kµdzµ,
in a coordinate system zµ, µ “ 0, . . . , 3. Show the following:

6. kkk is a Killing vector – do not confuse kkk with k;

7. Lkkkk “ 0 i.e. the form k is invariant along the vector kkk;

8. the form k is closed.

Hence, one can find a function upzq such that locally

k “ du.

9. Show that
ikkkdu “ 0.
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The function upzq is therefore constant along the integral lines of
the vector field kkk. Together with the function r along these lines
defined as

kkk “ Br, (4.2)

u can be adopted in a new coordinate system tu, r, x1 “ x, x2 “ yu.
The latter will be used until the end.

10. Justify why, in this coordinate system, the metric at hand reads:

ds2 “ 2dudr`Kpu, x, yqdu2`2Aipu, x, yqdxidu` gijpu, x, yqdxidxj.
(4.3)

The coordinate r leading to this form is not unique.

11. Show that under
r Ñ r`Λpu, x, yq,

the metric (4.3) is form-invariant with
$

&

%

K Ñ K` 2BuΛpu, x, yq,

Ai Ñ Ai ` BiΛpu, x, yq.

12. Provide a heuristic argument, inspired by two-dimensional
electromagnetism, to explain why Ai can be set to zero without
loss of generality.

The resulting metric captures many of the remarkable solutions to
Einstein’s equations, such as Robinson–Trautman, Kundt or pp-
waves.

4.2.2 The gravitational pp-waves

The pp-wave metric is obtained assuming that the two-dimensional
spatial section at constant r and u is Euclidean space:

gijpu, x, yqdxidxj “ δijdxidxj “ dx2 ` dy2.

This leads to

ds2 “ 2dudr` Kpu, x, yqdu2 ` dx2 ` dy2, (4.4)

representing a plane-fronted gravitational wave propagating along
the parallel rays tangent to the vector field kkk.

13. Write the inverse-metric components gµν for (4.4) and the rela-
tionship among the components vµ and vµ of a vector vvv and its
associated form v “ gpvvvq. These will be useful throughout the
exercise.

14. In the non-orthonormal natural frame tθu “ du, θr “ dr, θi “

dxi, i “ 1, 2u, show that the spin-connection elements
$

’

’

’

’

’

&

’

’

’

’

’

%

ωu
u “ ωu

r “ ωu
i “ ωi

j “ ωi
r “ ωr

r “ 0,

ωr
u “

1
2 dK “ 1

2

`

BuKdu` BiKdxi˘ ,

ωr
i “

1
2BiKdu,

ωi
u “ ´

1
2 δijBjKdu
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obey the metricity and torsionless conditions.

15. The non-vanishing elements of the curvature two-form are Rr
i

and Ri
u. Compute them and show that

Ruiju “
1
2
B2

ijK,

where B2
ij “

B2

BxiBxj .

16. Show that the only non-vanishing components of the Ricci and
of the Weyl tensors are respectively

Ruu “ ´
1
2

´

B2
xxK` B2

yyK
¯

and Cuiju “
1
2

ˆ

B2
ijK´

1
2

δij

”

B2
xxK` B2

yyK
ı

˙

.

17. Display Einstein’s vacuum equations for the pp-waves. What is
the remarkable property they satisfy?

One usually defines the following functions:
$

’

’

’

&

’

’

’

%

A0pu, x, yq “ 1
2

´

B2
xxK` B2

yyK
¯

,

A`pu, x, yq “ 1
2

´

B2
xxK´ B2

yyK
¯

,

Aˆpu, x, yq “ B2
xyK.

These allow to express and interpret the geodesic deviation inside
a one-parameter geodesic congruence xµpτ, σq describing point-like
test masses free-falling inside the pp-wave gravitational field.

18. Compute the geodesic-deviation acceleration vector compo-
nents au, ar, ai.

19. Choose a gauge where 9u “ 1 and u1 “ 0,1 and show that1 The dot stands for the τ-derivative
and the prime for σ-derivative.

$

&

%

ax ` ay “ 1
2 px

1 ` y1qA0 `
1
2 px

1 ´ y1qA` ` 1
2 px

1 ` y1qAˆ,

ax ´ ay “ 1
2 px

1 ´ y1qA0 `
1
2 px

1 ` y1qA` ´ 1
2 px

1 ´ y1qAˆ.
(4.5)

20. Interpret Eqs. (4.5), making the distinction between vacuum
and non-vacuum pp-wave solutions.

4.2.3 The plane waves in Brinkmann coordinates

Quadratic functions Kpu, x, yq,

Kpu, x, yq “
1
2

Kijpuqxixj,

define a subclass of pp-waves dubbed plane waves. The coordinate
system in use is known as Brinkmann’s.

21. What are now vacuum Einstein’s equations?

22. Consider the following configuration:

Kxy “ κδpuq, Kxx “ Kyy “ 0 (4.6)

with κ an arbitrary constant. Does (4.6) solve Einstein’s equa-
tions? How would you interpret it?
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A gravitational plane wave has extra symmetries, besides the origi-
nal one generated by the null Killing vector field kkk.

23. Show that the following vector fields:

ξξξ “ f ipuqBi ´ δijxi d f j

du
Br, (4.7)

are Killing for any solution f ipuq of the harmonic-oscillator equa-
tion

d2 f i

du2 “
1
2

δikKkjpuq f j.

It can be shown that this equation possesses 4 linearly independent
solutions and that the 5 Killing fields kkk and ξξξ, Eqs. (4.2) and (4.7),
obey the Heisenberg algebra.
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• The proposed exercises do not require long technical develop-
ments. The longest (23) does not exceed one page.

• Bold typefaces as uuu designate vectors, forms or more general ten-
sors. The context makes the meaning clear. Anyway, the indices
appearing in the components can be lowered or raised at wish
using the metric tensor.

• The connection will always be metric and torsionless i.e. Levi–
Civita.

• The fully antisymmetric tensor has components η0123 “
?g

with g the absolute value of the metric determinant, whereas
η0123 “ ´1{

?
g.

• Geodesics will always be affinely parameterized.

• Useful integrals (valid for x ą 1):

ż

dx

a

1{x

1´ 1{x
“ 2

?
x´ ln

?
x` 1

?
x´ 1

,
ż

dx
?

x
1´ 1{x

“ 2
?

x
´

1`
x
3

¯

` ln
?

x` 1
?

x´ 1
.

• Cartan’s formalism in orthonormal frame leads to the following
equations for a Levi–Civita connection:

$

&

%

ωab `ωba “ 0 with ωab “ ηacωc
b,

dθθθa `ωa
b ^ θθθb “ 0,

where ωa
b are the elements of the spin-connection one-form.

The curvature two-form is given by the second Cartan structure
equation:

Ra
b “ dωa

b `ωa
c ^ωc

b.

• Further formulas – Christmas homework. The Kerr metric reads:

ds2 “ ´
∆
$2

”

cdt´ a sin2 ϑ dϕ
ı2
`

$2

∆
dr2

`$2dϑ2 `
sin2 ϑ

$2

”

ac dt´
´

r2 ` a2
¯

dϕ
ı2

,

where

∆ “ r2 ` a2 ´ 2mr, $2 “ r2 ` a2 cos2 ϑ.
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More explicitly, one finds:

g00 “ ´1`
2mr
ρ2 , gϕϕ “

ˆ

r2 ` a2 `
2mra2

ρ2 sin2 ϑ

˙

sin2 ϑ, g0ϕ “ ´
2mra

ρ2 sin2 ϑ.

As usual x0 “ ct and m “ MG{c2. For convenience, the inverse
metric is also displayed:

g00 “ ´1´
4mr

`

r2 ` a2˘

`

r2 ` a2 ´ 2mr
˘ `

2r2 ` a2 ` a2 cosp2ϑq
˘ ,

gϕϕ “

`

2r2 ` a2 ` a2 cosp2ϑq ´ 4mr
˘

sin2 ϑ
`

r2 ` a2 ´ 2mr
˘ `

2r2 ` a2 ` a2 cosp2ϑq
˘ ,

g0ϕ “ ´
4mra

`

r2 ` a2 ´ 2mr
˘ `

2r2 ` a2 ` a2 cosp2ϑq
˘ .

5.1 Local observers, free fall and Fermi–Walker transport

5.1.1 Setting the stage

In general relativity we must define carefully the local frames with
respect to which measurements are made. These frames are ma-
terialized in a time-like congruence Cuuu tangent to a vector field uuu.
The later may or may not be geodesic, and it is associated with the
velocity field of a family of observers. These usually carry another
set of three space-like vectors eeei, i “ 1, 2, 3 forming with eee0 “ uuu{c

a tetrad i.e. a local frame, which for convenience is often chosen
orthonormal:

eeea ¨ eeeb “ ηab, a, b “ 0, 1, 2, 3.

The associated coframe is as usual θθθa with θθθapeeebq “ ieeebθθθa “ δa
b , and

allows to express the background metric as

ds2 “ ηabθθθaθθθb.

In practice, the space-like triads are realized with gyroscopes.
A vector field uuu has acceleration aaa and vorticity two-form ψψψ

defined as:

aaa “ ∇uuuuuu, ψψψ “
1
2

ˆ

duuu`
1
c2 uuu^ aaa

˙

. (5.1)

One also defines the vorticity one-form as the Hodge–Poincaré dual
of uuu^ψψψ:

ΩΩΩ “ ˚ puuu^ψψψq .

1. Show that the vector field uuu is hypersurface-orthogonal iff ΩΩΩ “ 0.

2. Show that the components of ΩΩΩ read: Ωσ “ 1
2 uµψνρηµνρσ.

3. Prove

∇eeebθθθa “ ´θθθcieeeb ωa
c.

Hint: use Leibniz rule.
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5.1.2 Free-falling observers and application to Schwarzschild

We assume the congruence Cuuu be geodesic.

4. Show that if two vector fields vvv and www are parallelly transported
along Cuuu, then their scalar product vvv ¨www is constant along Cuuu.
Conclude that a free-falling observer can carry parallelly without
obstruction an orthonormal local frame eeea with eee0 “ uuu{c.

In Schwarzschild geometry,

ds2 “ ´
´

1´
rg

r

¯

c2dt2 `
dr2

1´ rg
r

` r2
´

dϑ2 ` sin2 ϑ dϕ2
¯

,

the time-like geodesics obey (the dot is the derivative with respect
to proper time τ):

c2 9t “
E

1´
rg

r

, 9ϕ “
L

r2 sin2 ϑ
, 9r2 ´ c2 rg

r
`

L2

r2 ´
L2rg

r3 “
E2 ´ c4

c2 .

(5.2)
We consider observers moving inwards on a radial congruence
tangent to the vector field

uuu “
1

1´ rg
r

Bt ´

c

rg

r
cBr.

5. Show (using Eqs. (5.2)) that the congruence Cuuu at hand is geodesic,
and determine E and L. What is the kinematical state of the con-
sidered observers at radial infinity?

6. For the geodesics Cuuu, determine the functions rpτq and tprq,
assuming that the observer is at r Ñ `8 when t Ñ ´8 and
τ Ñ ´8.

7. When do these observers reach the horizon, in coordinate and in
proper time?

Together with this vector field eeet “ uuu{c, we define three extra
space-like1 mutually orthogonal and norm-1 vector fields: 1 Space-like and time-like refer in this

discussion to the asymptotic region
r ą rg.eeer “ ´

1
b

r
rg
´

b

rg
r

1
c
Bt ` Br, eeeϑ “

1
r
Bϑ, eeeϕ “

1
r sin ϑ

Bϕ.

8. Show that the coframe dual to eeea is

θθθt “ cdt`
1

b

r
rg
´

b

rg
r

dr, θθθr “

c

rg

r
cdt`

1
1´ rg

r

dr, θθθϑ “ rdϑ, θθθϕ “ r sin ϑdϕ.

Alternatively

cdt “
1

1´ rg
r

θθθt´
1

b

r
rg
´

b

rg
r

θθθr, dr “ ´
c

rg

r
θθθt`θθθr, dϑ “

1
r

θθθϑ, dϕ “
1

r sin ϑ
θθθϕ.

The independent spin-connection elements are
$

&

%

ωr
t “

1
2

b

rg
r3 θθθr, ωϑ

t “ ´
b

rg
r3 θθθϑ, ωϑ

r “
1
r θθθϑ,

ω
ϕ

t “ ´
b

rg
r3 θθθϕ, ω

ϕ
r “

1
r θθθϕ, ω

ϕ
ϑ “

cot ϑ
r θθθϕ.
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9. Prove that θθθa are parallelly transported along Cuuu. Be careful:
the proof fits in two lines, using appropriately the already established
results.

In summary, we have at our disposal a congruence of free-falling
observers carrying parallelly orthonormal tetrads – since θθθa are
parallelly transported so are their duals eeea (we knew it already for
eee0 “ cuuu because Cuuu was proven to be geodesic).

10. Show that uuu is hypersurface orthogonal, and determine the
equation of the corresponding hypersurface in the form Tpxq “
T0 (T0 is an arbitrary constant).

From this point on, it would be natural to define Fermi normal
coordinates (often abusively called Riemann normal coordinates)
around a given geodesic of the congruence. These include the
proper time along the geodesic, and three spatial coordinates de-
fined inside the above hypersurface, whose lines are tangent to
the eeeis at the geodesic. We will not delve into this quite technical
subject.22 Interested students are welcome to

check the following publications:

• F. K. Manasse and
C. W. Misner, Fermi normal
coordinates and some basic concepts in
differential geometry, J. Math. Phys. 4
(1963) 735;

• D. Bini, A. Geralico and R. T.
Jantzen, Fermi coordinates in
Schwarzschild spacetime: closed
form expressions, Gen. Rel. Grav. 43
(2011) 1837, arXiv:1408.4947 [gr-qc].

5.1.3 Energy measurements

In the above setup, a radial photon comes from infinity with mo-
mentum ppp “ p0cdt ` prdr. This photon is captured by the free-
falling observer at r, who measures its energy Effr .

11. We define E “ ´cp0. Why is E conserved along the photon
trajectory, and what is its meaning? Determine pr. Be careful: the
photon is falling inwards.

12. Compute Effr . Compare with the energy Err that would have
measured an observer at rest at the same location r. Explain the
difference.

5.1.4 Accelerated observers

Often observers are accelerated, as are ordinary people at rest or
astronauts flying in rockets. These can still carry gyroscopes, and
the concept of (no longer parallelly) transported tetrads should be
made mathematically sound.

Given an accelerated congruence Cuuu tangent to a normalized
vector field uuu (i.e. }uuu}2 “ ´c2) with acceleration aaa, one defines the
Fermi derivative along uuu of any vector field vvv as follows:

DF
uuuvvv “ ∇uuuvvv`

1
c2 paaapvvv ¨uuuq ´uuupvvv ¨ aaaqq

or, in components

DF
uuuvµ “ uν∇νvµ `

1
c2 pa

µvνuν ´ uµvνaνq .

A vector field is transported à la Fermi–Walker along a congru-
ence Cuuu if its Fermi derivative vanishes along the vector field uuu.

https://arxiv.org/abs/1408.4947
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14. Show that any vector uuu such that }uuu}2 “ ´c2 is always self-
Fermi–Walker-transported.

15. Show that if vvv is orthogonal to uuu along Cuuu, then DF
uuuvvv is also

orthogonal to uuu.

16. Show that if two vectors vvv and www are Fermi–Walker-transported
along a vector uuu, then their scalar product vvv ¨www is constant along
every orbit of the congruence Cuuu.

In summary, any observer of a family can carry an orthonormal
local frame, consisting of the velocity field eee0 “ uuu{c and three space-
like Fermi–Walker-transported vectors eeei, i “ 1, 2, 3.

We further impose that Fermi derivative (i) obeys Leibniz rule
for tensor or contracted tensor product, and (ii) coincides for scalar
functions f with the ordinary directional derivative: DF

uuu f “ ∇uuu f “
uuup f q.

17. Show that for a one-form www “ wµdxµ

DF
uuuwµ “ uν∇νwµ `

1
c2

`

aµwνuν ´ uµwνaν
˘

. (5.3)

Tip: start with wµvµ for arbitrary vµ.

18. Rewrite (5.3) in terms of the vorticity of uuu defined in (5.1).

Using Leibniz rule, the Fermi derivative can be generalized to any
tensor, and for any tensor Fermi–Walker transport along a congru-
ence Cuuu demands vanishing Fermi derivative along the vector field
uuu.

5.1.5 Back to Schwarzschild from hovering observers

A hovering observer3 is at rest at fixed “altitude” r and celestial 3 None of the quantities uuu, eeea, θθθa, ωωω
introduced here should be confused
with those already met for free-falling
observers.

inclination ϑ, ϕ. He needs for that a spacecraft with powerful en-
gines in order to resist against falling. Assuming he is skilled and
succeeds, his canonically normalized velocity vector will be

uuu “
1

b

1´ rg
r

Bt.

We assume having a whole set of such observers filling the sky, and
defining a genuine continuous congruence Cuuu.

Given eeet “ uuu{c, it is natural to define a new orthonormal coframe
as

θθθt “

c

1´
rg

r
cdt, θθθr “

1
b

1´ rg
r

dr, θθθϑ “ rdϑ, θθθϕ “ r sin ϑdϕ.

19. Determine the spatial frame vectors eeer, eeeϑ and eeeϕ (read them off
without much computation).

20. Using Cartan’s formalism, determine the independent spin-
connection elements:

ωr
t, ωϑ

r, ω
ϕ

r, ω
ϕ

ϑ.
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Be systematic: compute dθθθa, a “ t, r, ϑ, ϕ, express them in terms of θθθa,
read off the spin connection. Each element turns out to be single-term.
The other two independent elements ωϑ

t and ω
ϕ

t vanish.

21. Compute the acceleration form aaa “ abθθθb. Determine its norm
a “

a

abab. How would you interpret it? What happens at the
horizon? Renormalize the blue-shift divergence of a by appropri-
ate multiplication. What is the renormalized acceleration at the
horizon, arprgq?

22. Prove that the coframe tetrad is Fermi–Walker-transported
along Cuuu. Again: do not embark in long technicalities.

23. Determine the independent elements of the curvature two-
form:

Rr
t, Rϑ

t, Rϑ
r, Rϕ

t, Rϕ
r, Rϕ

ϑ

(each contains at the end a single and simple term).

5.2 Killing & Killing–Yano tensors and conservation laws

5.2.1 General properties

Killing vectors ξξξ “ ξµBµ provide the mean for constructing con-
served quantities for geodesic motion, which are linear in the ve-
locity of the point-like free-falling object: ξµuµ. This is Nœther’s
theorem.

We work here in natural frames.

• Killing tensors are symmetric, rank-n tensor fields KKK with compo-
nents Kν1 ...νn “ Kpν1 ...νnq obeying

∇pµKν1 ...νnq “ 0.

• Killing–Yano tensors are antisymmetric, rank-n tensor fields yyy (i.e.
n-forms) with components yν1 ...νn “ yrν1 ...νns obeying

∇pµyν1q...νn “ 0.

24. Show that the scalar Kν1 ...νn uν1 . . . uνn is conserved along geodesics.

25. Give a trivial example for a rank-2 Killing tensor, always
present. What is the corresponding conserved quantity along
geodesics?

26. Show that the n ´ 1-form with components iuuuyyy is parallelly
transported along geodesics.

27. Suppose yyy be a rank-2 Killing–Yano tensor with components
yµν. Show that Kµν “ y ρ

µ yρν are the components of a rank-2
Killing tensor. Tip: write explicitly ∇pµKνρq “ 0.
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5.2.2 Kerr geometry – Christmas homework

A less trivial rank-2 Killing tensor is available in Kerr’s rotating
black-hole solution. This was discovered in 1968 by Brandon Carter,
demonstrating thereby that geodesic motion (and other field equa-
tions) was integrable in that background.4 For that purpose, one 4 B. Carter, Hamilton–Jacobi and

Schrödinger separable solutions of Ein-
stein’s equations, Commun. Math. Phys.
10 (1968) 280.

introduces two vector fields:

`̀̀ “
r2 ` a2

c∆
Bt ` Br `

a
∆
Bϕ,

kkk “
r2 ` a2

2cρ2 Bt ´
∆

2ρ2 Br `
a

2ρ2 Bϕ.

28. Show that `̀̀ and kkk are light-like vectors with `̀̀ ¨ kkk “ ´1.

29. Show that
Kµν “ ρ2 p`µkν ` `νkµq ` r2gµν

are the components of a Killing tensor.

30. What happens in the limit of vanishing a?
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