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These two exercises are an introduction to the replica method, which is a very powerful tech-
nique used in disordered systems. This theoretical framework seems at first quite acrobatic–to say the
least ; putting it on a firm mathematical basis has been and still is an important research problem in
mathematical physics and probability theory.

The starting point of the replica method is one of the simple equalities :

E[lnZ] = lim
n→0

E[Zn]− 1

n
= lim

n→0

lnE[Zn]

n
(1)

where E[•] denotes the average over the quenched disorder. These identities are certainly true when n
is a real parameter. However in complicated models one can easily compute E[Zn] only when n is an
integer. What makes the replica method acrobatic is the “analytic continuation” from integer values
to 0, which in some cases is not unique.

1 A toy model

Consider a ”toy” disordered partition function Z = exN where x plays the role of the quenched
disorder ; x is equal to a with probability 1− e−cN and to b with probability e−cN . We are interested
in the thermodynamic limit where the size of the system, N , goes to infinity.

• Compute lim
N→∞

(lnE[Z])/N and lim
N→∞

(E[lnZ])/N . Give a condition on a, b, c under which these

two limits are distinct ; where does the difference among the two results come from ?

• Use now the replica trick (1) to get the result doing the thermodynamic limit first and the
n→ 0 limit later (the reverse order must trivially give the correct result). Why does the n→ 0
limit help compared to the previous computation ?

2 A slightly more involved case

We now consider another very simple disordered system : an Ising spin in a random quenched
magnetic field h, where h is a Gaussian random variable of mean zero and variance one.

• Show that

E[lnZ] =

∫ +∞

−∞

dh√
2π
e−h

2/2 ln
(

1 + e2βh
)
. (2)

• In order to use the replica trick, you have to obtain E[Zn]. Show that for n integer,

E[Zn]− 1 =
n∑
k=1

e
β2

2
(2k−n)2 n!

(n− k)!k!
+ eβ

2n2/2 − 1 ;

you need to know the value of E[eah] when h is a centered Gaussian variable, see the “reminder
on some Gaussian identities”.
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• How to continue for real values of n the above expression ? A natural idea is to use the Gamma
function Γ(z) =

∫∞
0 tz−1e−tdt. Recall, or prove if you have never seen them, the identities

Γ(z + 1) = zΓ(z), and Γ(p+ 1) = p! for positive integer p (we will use the standard definition
0! = 1). This allows you to rewrite the previous equation as

E[Zn]− 1 =

n∑
k=1

e
β2

2
(2k−n)2 Γ(n+ 1)

Γ(n− k + 1)Γ(k + 1)
+ eβ

2n2/2 − 1 .

Explain why one can extend the sum over k up to infinity, thus obtaining the expression

E[Zn]− 1 =
∞∑
k=1

e
β2

2
(2k−n)2 Γ(n+ 1)

Γ(n− k + 1)Γ(k + 1)
+ eβ

2n2/2 − 1 ,

where n can be continued to real values.
• We are now ready to perform the n→ 0 limit. In order to do that you have to establish (using

the equality Γ(z + 1) = zΓ(z)) a few properties of the Gamma function. Show that for n → 0
and l a positive integer

Γ(l + n)→ (l − 1)!

whereas for n→ 0 and l a negative (or zero) integer :

Γ(l + n) =
1

n

(−1)−l

(−l)!
(1 + o(1)) .

• Using this result and the replica trick recover that

E[lnZ] =

∫
dh√
2π
e−h

2/2 ln
(

1 + e2βh
)

The aim of this exercise was to make you acquainted with the acrobatic procedures one has to do
in order to use the replica trick. You could certainly claim that there was some arbitrariness in the
procedure–and you would be right !–but the final result is the correct one. You will see in the next
lecture and problem class the replica method at work in much more challenging cases for which no
direct average of lnZ is doable.
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