# ICFP M2 - Statistical physics 2 <br> Homework n ${ }^{0} 4$ 

Random Matrices

Guilhem Semerjian

March 2019

This exercise is a preparation to the next lectures and TDs that will focus on Random Matrices and Random Hamiltonians.

Consider a two by two symmetric real random matrix $M$ such that the matrix elements $M_{11}, M_{12}$ and $M_{22}$ are independent Gaussian random variables with zero mean and variances :

$$
\mathbb{E}\left[M_{11}^{2}\right]=1, \quad \mathbb{E}\left[M_{22}^{2}\right]=1, \quad \mathbb{E}\left[M_{12}^{2}\right]=\frac{1}{2} ;
$$

by symmetry $M_{21}=M_{12}$. We denote $\lambda_{1}$ and $\lambda_{2}$ the eigenvalues of $M$, and $\Delta=\left|\lambda_{1}-\lambda_{2}\right|$ their spacing.
Find the probability density of $\Delta$, its average value $\mathbb{E}[\Delta]$, and deduce that the normalized spacing $s=\Delta / \mathbb{E}[\Delta]$ has the probability density

$$
P(s)=\frac{\pi}{2} s e^{-\frac{\pi}{4} s^{2}},
$$

known as the Wigner surmise.
It is what Wigner proposed as an approximation for the probability density function of the normalised mean-level spacing of very complex nuclei, see Figure 1. The connection between random matrices and the Hamiltonian of a very complex non-random Hamiltonian will be discussed in the next lectures and TDs.


Figure 1 - Nearest neighbor spacing distribution for the "Nuclear Data Ensemble" comprising 1726 spacings (histogram) versus $s=S / D$ with $D$ the mean level spacing and $S$ the actual spacing. For comparison, the Wigner surmise labelled GOE is shown (don't mind about the curve labelled Poisson).

