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This exercise is a preparation to the next lectures and TDs that will focus on Random Matrices
and Random Hamiltonians.

Consider a two by two symmetric real random matrix M such that the matrix elements Miq, Mo
and Moo are independent Gaussian random variables with zero mean and variances :
1
E[Mfl] =1, E[MQQQ] =1, E[Mlgz] = 9 )
by symmetry Ma; = Mjo. We denote A\; and Ay the eigenvalues of M, and A = |A\; — Az their spacing.

Find the probability density of A, its average value E[A], and deduce that the normalized spacing
s = A/E[A] has the probability density
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known as the Wigner surmise.

It is what Wigner proposed as an approximation for the probability density function of the norma-
lised mean-level spacing of very complex nuclei, see Figure 1. The connection between random matrices

and the Hamiltonian of a very complex non-random Hamiltonian will be discussed in the next lectures
and TDs.
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FIGURE 1 — Nearest neighbor spacing distribution for the “Nuclear Data Ensemble” comprising 1726
spacings (histogram) versus s = S/D with D the mean level spacing and S the actual spacing. For
comparison, the Wigner surmise labelled GOE is shown (don’t mind about the curve labelled Poisson).



