ICFP M2 - STATISTICAL PHYSICS 2 Homework n^o 4 Random Matrices

Guilhem Semerjian

March 2019

This exercise is a preparation to the next lectures and TDs that will focus on Random Matrices and Random Hamiltonians.

Consider a two by two symmetric real random matrix M such that the matrix elements M_{11} , M_{12} and M_{22} are independent Gaussian random variables with zero mean and variances :

$$\mathbb{E}[M_{11}^2] = 1$$
, $\mathbb{E}[M_{22}^2] = 1$, $\mathbb{E}[M_{12}^2] = \frac{1}{2}$;

by symmetry $M_{21} = M_{12}$. We denote λ_1 and λ_2 the eigenvalues of M, and $\Delta = |\lambda_1 - \lambda_2|$ their spacing.

Find the probability density of Δ , its average value $\mathbb{E}[\Delta]$, and deduce that the normalized spacing $s = \Delta/\mathbb{E}[\Delta]$ has the probability density

$$P(s) = \frac{\pi}{2} s \, e^{-\frac{\pi}{4}s^2} \; ,$$

known as the Wigner surmise.

It is what Wigner proposed as an approximation for the probability density function of the normalised mean-level spacing of very complex nuclei, see Figure 1. The connection between random matrices and the Hamiltonian of a very complex non-random Hamiltonian will be discussed in the next lectures and TDs.

FIGURE 1 – Nearest neighbor spacing distribution for the "Nuclear Data Ensemble" comprising 1726 spacings (histogram) versus s = S/D with D the mean level spacing and S the actual spacing. For comparison, the Wigner surmise labelled GOE is shown (don't mind about the curve labelled Poisson).