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The two eigenvalues of M are the solutions of its characteristic equation

A2 — (Mg + M)A + (My1 Mag — M%) =0, (1)
which read Mot 4 M 1
% + 5\/(M11 + Mag)? — 4(My1 Moy — M%) (2)
hence
A= /(M1 — My)? + 4M3, . (3)

Denoting X = M, — Moy and Y = 2M9, we realize that X and Y are two independent Gaussian
random variables, both of variance 2, and that A = v/ X2 + Y2 can be seen as the distance from the
origin of a point drawn in the plane with this distribution. Hence the density of A is
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after a change of variable towards polar coordinates. The average value of A is thus
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Changing variables from A to s = A/E[A] yields the probability density
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P(s) = P(A = sy/7)\/7 = —se” °
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