Problem Set for Exercise Session No. 2
 Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1)

 27th November, 2014, at Room 235ALecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr)
Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 Representation of D_{3}

Let us consider \mathbf{R}^{3} (three-dimensional Euclidean space) and an equilateral triangle (with the length of the side $\sqrt{2}$) as in Fig.1. In this Figure, \mathbf{e}_{i} is the unit vector along the i-th axis of the Cartesian coordinate ($i=1,2,3$):

$$
\mathbf{e}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \mathbf{e}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

These unit vectors form an orthonormal basis of the three-dimensional Euclidean space. Since elements of $D_{3}=\left\{e, c_{3}, c_{3}^{-1}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ by definition map this equilateral triangle into itself, we can write down the action of $g \in D_{3}$ as

$$
g \mathbf{e}_{i}=\sum_{j=1}^{3} \mathbf{e}_{j} R_{j i}(g) \quad(\text { for } i=1,2,3) .
$$

Therefore corresponding to each element $g \in D_{3}$, we can assign a 3×3 matrix $R(g)=$ $\left(R_{i j}(g)\right)$. Answer the following questions:

1. Show that $R(g)$'s are given by

$$
\begin{array}{lll}
R(e)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & R\left(c_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), & R\left(c_{3}^{-1}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \\
R\left(\sigma_{1}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), & R\left(\sigma_{2}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), & R\left(\sigma_{3}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) . \tag{1.1}
\end{array}
$$

One can explicitly write down the multiplication table of $R(g)$'s to see that R is a representation matrix for a three-dimensional representation of D_{3}. We denote this representation as ρ.
2. Now we introduce another unit orthonormal basis

$$
\tilde{\mathbf{e}}_{1}=\frac{1}{\sqrt{3}}\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right), \quad \tilde{\mathbf{e}}_{2}=\frac{1}{\sqrt{6}}\left(2 \mathbf{e}_{1}-\mathbf{e}_{2}-\mathbf{e}_{3}\right), \quad \tilde{\mathbf{e}}_{3}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right) .
$$

Figure 1: Equilateral triangle in \mathbf{R}^{3}.

By using this basis, we can similarly construct the representation matrix $\tilde{R}(g)=$ $\left(\tilde{R}_{i j}(g)\right)$ defined by

$$
g \tilde{\mathbf{e}}_{i}=\sum_{j=1}^{3} \tilde{\mathbf{e}}_{j} \tilde{R}_{j i}(g) \quad(\text { for } i=1,2,3)
$$

Show that $\tilde{R}(g)$'s are given by

$$
\begin{aligned}
& \tilde{R}(e)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \tilde{R}\left(c_{3}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), \quad \tilde{R}\left(c_{3}^{-1}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\
0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) \\
& \tilde{R}\left(\sigma_{1}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad \tilde{R}\left(\sigma_{2}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
0 & -\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right), \quad \tilde{R}\left(\sigma_{3}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\
0 & \frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right) .
\end{aligned}
$$

We can check that there is no basis which diagonalizes all the $R(g)$'s. This expression indicates that this representation ρ is completely reducible, and the 1×1 block and the 2×2 block in $\tilde{R}(g)$'s

$$
\begin{aligned}
& R^{(1)}(g)=1, \quad\left(\text { for } \forall g \in D_{3}\right), \\
& R^{(2)}(e)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad R^{(2)}\left(c_{3}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), \quad R^{(2)}\left(c_{3}^{-1}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) \\
& R^{(2)}\left(\sigma_{1}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad R^{(2)}\left(\sigma_{2}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right), \quad R^{(2)}\left(\sigma_{3}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

are representation matrices of a one-dimensional irreducible representation (denoted as $\rho^{(1)}$) and a two-dimensional irreducible representation (denoted as $\rho^{(2)}$).
3. Are $\rho^{(1)}$ and $\rho^{(2)}$ unitary?
4. Let us consider another 1×1 matrices $R^{\left(1^{\prime}\right)}(g)$: $R^{\left(1^{\prime}\right)}(e)=R^{\left(1^{\prime}\right)}\left(c_{3}\right)=R^{\left(1^{\prime}\right)}\left(c_{3}^{-1}\right)=1, \quad R^{\left(1^{\prime}\right)}\left(\sigma_{1}\right)=R^{\left(1^{\prime}\right)}\left(\sigma_{2}\right)=R^{\left(1^{\prime}\right)}\left(\sigma_{3}\right)=-1$. Write down the multiplication table of $R^{\left(1^{\prime}\right)}(g)$'s to confirm that $R^{\left(1^{\prime}\right)}(g)$ is indeed a representation matrix for a one-dimensional irreducible representation of D_{3}. We call this representation as $\rho^{\left(1^{\prime}\right)}$.

