Problem Set for Exercise Session No. 3
 Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1) 4th December, 2014, at Room 235A
 Lecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr) Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 More on Representations

Answer the following question:
(1) Let us consider the dihedral group D_{3}.

1. Write down the matrix representations of the elements in D_{3} for the regular representation.
2. Let us recall the three dimensional representation ρ of D_{3} in the Problem Set No.2. The matrix representation of the elements are

$$
\begin{array}{lll}
M(e)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & M\left(c_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), & M\left(c_{3}^{-1}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \\
M\left(\sigma_{1}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), & M\left(\sigma_{2}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), & M\left(\sigma_{3}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{array}
$$

Now we consider the tensor product representation of two ρ 's. Write down the matrix representations of the elements in D_{3} for this tensor product representation.
(2) Let us consider a finite group G and its representation $\rho: G \rightarrow G L(n, \mathbb{C})$.

1. Show that $\bar{\rho}: G \rightarrow G L(n, \mathbb{C})$ defined by $\bar{\rho}(g)=\left(\rho\left(g^{-1}\right)\right)^{T}$ (for $\left.g \in G\right)$ is a representation of G (that is, confirm that $\bar{\rho}$ is a homomorphism).
2. Show that $\rho^{*}: G \rightarrow G L(n, \mathbb{C})$ defined by $\rho^{*}(g)=(\rho(g))^{*}($ for $g \in G)$ is a representation of G (that is, confirm that $\bar{\rho}$ is a homomorphism). Here $(\cdots)^{*}$ means the complex conjugate of (\cdots).

2 Symmetry in Quantum Mechanics

Here we consider a quantum mechanical system with Hamiltonian H (recall that $H=H^{\dagger}$ where $(\cdots)^{\dagger}$ represents the Hermitian conjugate of (\cdots)).

1. Let us denote by $|\psi\rangle$ and $|\phi\rangle$ eigenstates of H with eigenvalues E and $E^{\prime}\left(E \neq E^{\prime}\right)$, respectively. Show that these states are orthogonal, $\langle\psi \mid \phi\rangle=0$.
2. Let us collect invertible and linear operators commuting with the Hamiltonian to form a set. We notice that the identity operator id obviously commuting with any operators is included in this set. The inverse of the operator A in this set is denoted as A^{-1} and satisfies $A A^{-1}=A^{-1} A=i d$. For operators A and B in this set, confirm

$$
\text { (1) } \quad A B H=H A B, \quad \text { (2) } \quad A^{-1} H=H A^{-1} \text {. }
$$

This result indicates that these operators form a group. In the following we consider its subgroup and denote as G. We assume that G is a finite group.
3. For an eigenstate $|\psi\rangle$ of the Hamiltonian with the eigenvalue E, confirm that $A|\psi\rangle$ (for $A \in G$) is also an eigenstate of the Hamiltonian with the eigenvalue E.
From this, we obtain the following result: We denote eigenstates of the Hamiltonian H with eigenvalue E as $\left|\psi_{a}\right\rangle(a=1,2, \cdots, n)$. Then, under the action of $A \in G$, the eigenstates transform as

$$
A\left|\psi_{a}\right\rangle=\sum_{b=1}^{n}\left|\psi_{b}\right\rangle M_{b a}(A) .
$$

It is straightforward to see that the $n \times n$ matrix $M(A)=\left(M_{a b}(A)\right)$ is a matrix representation of $A \in G$. Therefore the eigenstates of the Hamiltonian with the same eigenvalue form a basis for a representation of G. Since G is a finite group, $M(A)$ is a unitary matrix.
4. Now we label the (non-isomorphic) irreducible representations of G by α and denote them by $\rho^{(\alpha)}$. Let us suppose that the eigenstates $\left|\psi_{a}^{(\alpha)}\right\rangle\left(a=1,2, \cdots, n_{\alpha}\right)$ of the Hamiltonian with the same eigenvalue form an orthonormal basis for the irreducible representation $\rho^{(\alpha)},\left\langle\psi_{a}^{(\alpha)} \mid \psi_{b}^{(\beta)}\right\rangle=\delta_{a b} \delta_{\alpha \beta}$. Then the matrix representation of $A \in G$ in the irreducible representation $\rho^{(\alpha)}$ is given by a $n_{\alpha} \times n_{\alpha}$ matrix $M^{(\alpha)}(A)=$ $\left(M_{a b}^{(\alpha)}(A)\right)$.
Prove the orthogonality of the irreducible representations:

$$
\sum_{A \in G}\left(M_{a c}^{(\alpha)}(A)\right)^{*} M_{b d}^{(\beta)}(A)=\frac{|G|}{n_{\alpha}} \delta_{\alpha \beta} \delta_{a b} \delta_{c d} .
$$

Here $\left(M_{a c}^{(\alpha)}(A)\right)^{*}$ means the complex conjugate of $M_{a c}^{(\alpha)}(A)$ and $|G|$ is the order of G.
(hint: use Schur's lemma.)
5. Let us consider an operator O which commutes with any element of G. Show that the matrix element $\left\langle\psi_{a}^{(\alpha)}\right| O\left|\psi_{b}^{(\beta)}\right\rangle$ can be written as

$$
\left\langle\psi_{a}^{(\alpha)}\right| O\left|\psi_{b}^{(\beta)}\right\rangle=C^{(\alpha)} \delta_{a b} \delta_{\alpha \beta},
$$

where $C^{(\alpha)}$ is a constant which depends only on the representation α. If needed, one can use the fact that the identity operator $i d \in G$ can be written now as $i d=\sum_{\alpha} \sum_{a}\left|\psi_{a}^{(\alpha)}\right\rangle\left\langle\psi_{a}^{(\alpha)}\right|$.
(hint: use the Schur's lemma or the orthogonality relation derived in the previous problem.)

Note on Revision

December 232014
Typos corrected.

