Problem Set for Exercise Session No. 5
 Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1)

 18th December, 2014, at Room 235ALecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr) Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 Some Basics on Manifolds

Answer the following questions:
(1) Here we confirm in two ways that a two-sphere with unit radius, $S^{2}=\{(x, y, z) \in$ $\left.\mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$, is a two-dimensional differentiable manifold of class C^{∞}.

1. We take an atlas $\left\{\left(O_{x}^{ \pm}, \varphi_{x}^{ \pm}\right),\left(O_{y}^{ \pm}, \varphi_{y}^{ \pm}\right),\left(O_{z}^{ \pm}, \varphi_{z}^{ \pm}\right)\right\}$where the open sets are defined by

$$
\begin{array}{lll}
O_{x}^{+}=\left\{(x, y, z) \in S^{2} \mid x>0\right\}, & & O_{x}^{-}=\left\{(x, y, z) \in S^{2} \mid x<0\right\}, \\
O_{y}^{+}=\left\{(x, y, z) \in S^{2} \mid y>0\right\}, & & O_{y}^{-}=\left\{(x, y, z) \in S^{2} \mid y<0\right\}, \\
O_{z}^{+}=\left\{(x, y, z) \in S^{2} \mid z>0\right\}, & & O_{z}^{-}=\left\{(x, y, z) \in S^{2} \mid z<0\right\} .
\end{array}
$$

and $\varphi_{x}^{ \pm}, \varphi_{y}^{ \pm}, \varphi_{z}^{ \pm}$are maps from the corresponding open sets to a two-dimensional open disk $D^{2}=\left\{(a, b) \in \mathbb{R}^{2} \mid a^{2}+b^{2}<1\right\}$:

$$
\begin{aligned}
& \varphi_{x}^{+}(x, y, z)=\varphi_{x}^{-}(x, y, z)=(y, z), \\
& \varphi_{y}^{+}(x, y, z)=\varphi_{y}^{-}(x, y, z)=(x, z), \\
& \varphi_{z}^{+}(x, y, z)=\varphi_{z}^{-}(x, y, z)=(x, y) .
\end{aligned}
$$

By using this atlas, compute the transition functions to confirm that S^{2} is a twodimensional differentiable manifold of class C^{∞}.
2. Let us consider another atlas $\left\{\left(U^{ \pm}, f^{ \pm}\right)\right\}$for S^{2} where the open sets are defined by

$$
U^{ \pm}=S^{2} \backslash\{(0,0, \pm 1)\},
$$

and $f^{ \pm}$are stereographic projections of S^{2} from $(0,0, \pm 1)$ to (x, y)-plane. By using this atlas, confirm that S^{2} is a two-dimensional differentiable manifold of class C^{∞}.
(2) Let us consider a two-dimensional real projective space $\mathbb{R} P^{2}$ defined as a quotient of $\mathbb{R}^{3} \backslash\{(0,0,0)\}$ under the equivalence relation

$$
(x, y, z) \quad \sim \quad\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \quad \Leftrightarrow \quad\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\lambda(x, y, z), \quad \lambda \in \mathbb{R} \backslash\{0\}
$$

for $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in \mathbb{R}^{3} \backslash\{(0,0,0)\}$. We denote the equivalence class for (x, y, z) by $[x: y: z]$.

1. We take an atlas $\left\{\left(U_{x}, \varphi_{x}\right),\left(U_{y}, \varphi_{y}\right),\left(U_{z}, \varphi_{z}\right)\right\}$ where the open sets are given by $U_{x}=\left\{[x: y: z] \in \mathbb{R} P^{2} \mid x \neq 0\right\}, U_{y}=\left\{[x: y: z] \in \mathbb{R} P^{2} \mid y \neq 0\right\}, U_{z}=\left\{[x: y: z] \in \mathbb{R} P^{2} \mid z \neq 0\right\}$, and the maps from these open sets to \mathbb{R}^{2} as
$\varphi_{x}([x: y: z])=\left(\frac{y}{x}, \frac{z}{x}\right), \quad \varphi_{y}([x: y: z])=\left(\frac{x}{y}, \frac{z}{y}\right), \quad \varphi_{z}([x: y: z])=\left(\frac{x}{z}, \frac{y}{z}\right)$.
Compute the transition functions to confirm that $\mathbb{R} P^{2}$ is a two-dimensional differentiable manifold of class C^{∞}.
2. Let us consider a quotient of S^{2} by the equivalence relation

$$
(x, y, z) \quad \sim \quad\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \quad \Leftrightarrow \quad\left(x^{\prime}, y^{\prime}, z^{\prime}\right)= \pm(x, y, z)
$$

for $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in S^{2}$ (that is, identify the antipodal points). We denote this quotient of S^{2} as S^{2} / \sim. Show that $\mathbb{R} P^{2}$ is homeomorphic to S^{2} / \sim.

2 Tangent Vector

Let us consider a point $p=\left(\sin \phi_{0}, 0, \cos \phi_{0}\right)$ (for $\left.\phi_{0} \in(0, \pi]\right)$ on $S^{2}=\{(x, y, z) \in$ $\left.\mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ and a curve $c:(-\epsilon, \epsilon) \rightarrow S^{2}$ (for $\epsilon>0$) defined by

$$
c(t)=\left(\sin \phi_{0} \cos t, \sin \phi_{0} \sin t, \cos \phi_{0}\right) .
$$

We note that this curve satisfies $c(t=0)=p$. Write down the tangent vector to this curve at p by using the coordinate introduced in Problem 1 (1)-2 through the stereographic projection from the north pole $(0,0,1) \in S^{2}$.

Note on Revision

Janurary 232015
Some problems in Problem 2 (in the old version) are moved to Problem Set No. 7 and 8.

