Problem Set for Exercise Session No.6

Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1) 8th January, 2015, at Room 235A

Lecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr) Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 Differential

(1) Let us consider differentiable manifolds M_1, M_2, M_3 of class C^{∞} and C^{∞} maps $f : M_1 \to M_2$ and $g : M_2 \to M_3$. We also denote a point on M_1 by p. Prove the following properties of the differentials (below d(...) means the differential of a map (...)):

- 1. $d(g \circ f)_p = dg_{f(p)} \circ df_p$.
- 2. $d(id_{M_1})_p = id_{T_pM_1}$. Here id_{M_1} and $id_{T_pM_1}$ are identity maps from M_1 to M_1 and T_pM_1 to T_pM_1 , respectively.
- 3. When f is a diffeomorphism, then df_p is an isomorphism and $(df_p)^{-1} = d(f^{-1})_{f(p)}$.

(2) Answer the following questions:

1. Let us consider a map $\psi : \mathbb{R}P^2 \to \mathbb{R}$ defined by

$$\psi([x:y:z]) = \frac{z^2}{x^2 + y^2 + z^2}.$$

By using the coordinates defined in Problem Set No.5, confirm that ψ is C^{∞} . Find points $p \in \mathbb{R}P^2$ at which the differential $d\psi_p : T_p \mathbb{R}P^2 \to T_{\psi(p)} \mathbb{R}$ vanishes.

2. Let us consider a map $\pi: S^2 \to \mathbb{R}P^2$ defined by $\pi(x, y, z) = [x: y: z]$ for $(x, y, z) \in S^2$. Show that, at any point $p \in S^2$, the differential $d\pi_p: T_pS^2 \to T_{\pi(p)}\mathbb{R}P^2$ is an isomorphic map.