Problem Set for Exercise Session No.7

Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1) 15th January, 2015, at Room 235A

Lecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr) Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 Lie Bracket

Answer the following questions:

(1) Let us consider the following vector fields on \mathbb{R}^3 :

$$X = x\partial_x - y\partial_y + z\partial_z$$
, $Y = x\partial_y$, $Z = y\partial_x + \frac{1+yz}{r}\partial_z$.

Compute Lie brackets of these vector fields.

(2) Let us consider a differentiable manifold M of class C^{∞} and a set $\mathfrak{X}(M)$ of differentiable vector fields on it. For $X, Y, Z \in \mathfrak{X}(M)$, $f, g \in C^{\infty}(M)$ and $a, b \in \mathbb{R}$, prove the following properties of the Lie bracket:

$$\begin{split} & [aX + bY, Z] = a[X, Z] + b[Y, Z] \,, \\ & [Z, aX + bY] = a[Z, X] + b[Z, Y] \,, \\ & [X, Y] = -[Y, X] \,, \\ & [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 \,, \\ & [fX, gY] = fg[X, Y] + f(Xg)Y - g(Yf)X \end{split}$$

2 *f*-related Vector Field

Answer the following questions:

(1) Let us consider a C^{∞} function $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x, y) = (x, x^2 + y)$ for $(x, y) \in \mathbb{R}^2$ and a C^{∞} vector field V on \mathbb{R}^2 defined by

$$V = -y\partial_x + x\partial_y \,.$$

Compute the *f*-related vector field of V on \mathbb{R}^2 .

(2) Construct a C^{∞} vector field on $S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$ which vanishes at the north pole (0, 0, 1) only. (Use the stereographic coordinate constructed in Problem Set No.5.)

3 Left-invariant Vector Field

Answer the following questions:

1. We consider a Lie group $GL(n, \mathbb{R})$ and the left translation ℓ_g by $g \in GL(n, \mathbb{R})$. We also denote by X an element of $T_{I_n}GL(n, \mathbb{R})$. Here I_n the unit element of $GL(n, \mathbb{R})$ (that is, the $n \times n$ unit matrix). Prove the following relation:

$$(d\ell_g)_{I_n}(X) = gX.$$

2. Let X be an element of $T_{I_n}GL(n,\mathbb{R})$. Construct the left-invariant vector field \tilde{X} which becomes X at $g = I_n$.

<u>Note</u>: A Lie group $GL(n, \mathbb{R})$ is an open subset of \mathbb{R}^{n^2} and then we can naturally introduce a coordinate x_{ij} (where $i, j = 1, 2, \dots, n$), and denote an element of $X \in T_{I_n}GL(n, \mathbb{R})$ as

$$X = \sum_{i,j} A_{ij} \left(\frac{\partial}{\partial x_{ij}} \right) \bigg|_{I_n}.$$

By using this, gX appearing above is defined by

$$gX = \sum_{i,j,k} g_{ik} A_{kj} \left(\frac{\partial}{\partial x_{ij}} \right) \bigg|_g.$$

Note on Revision

Janurary 23 2015 Explanation added in Problem 3. A typo corrected.