Problem Set for Exercise Session No. 8
 Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1) 22nd January, 2015, at Room 235A

Lecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr)
Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 Integral Curve

Let us consider a vector field $X=-y \partial_{x}+x \partial_{y}$ on \mathbb{R}^{2}. Find the corresponding integral curve $c(t)$ starting with $\left(x_{0}, y_{0}\right)$ at $t=0$.

2 Some Property of Exponential Map of Matrix

Prove some identities related to the exponential of $n \times n$ matrices:

1. Let us consider a $n \times n$ matrix A and a parameter t. Show

$$
\frac{d}{d t} e^{t A}=A e^{t A}=e^{t A} A
$$

2. Let us consider two $n \times n$ matrices A, B satisfying $[A, B]=0$. Show

$$
e^{A+B}=e^{A} e^{B} .
$$

3. Let us consider two $n \times n$ matrices A, B satisfying $[A, B]=B$ and a parameter t. For these matrices, show

$$
e^{t A} B e^{-t A}=e^{t} B .
$$

4. Let us consider two $n \times n$ matrices A, B satisfying $[A, B]=C$ and $[A, C]=B$ for a square matrix C and a parameter t. For these matrices, show

$$
e^{t A} B e^{-t A}=(\cosh t) B+(\sinh t) C .
$$

5. For a $n \times n$ matrix A which is diagonalizable, show $\operatorname{det}(\exp (A))=\exp (\operatorname{tr} A)$.

6 . For a general $n \times n$ matrix A, show $\operatorname{det}(\exp (A))=\exp (\operatorname{tr} A)$.

3 Lie Group and Lie Algebra

(1) Let us consider a Lie group $G L(n, \mathbb{R})$ and denote by $X=\left.\sum_{i, j} A_{i j}\left(\partial / \partial x_{i j}\right)\right|_{I_{n}}$ an element of $T_{I_{n}} G L(n, \mathbb{R})$. We also denote by \tilde{X} the left-invariant vector field corresponding
to X as derived in Problem Set No.7. Show that the integral curve $c(t)$ for \tilde{X} satisfying $c(t=0)=I_{n}$ is given by

$$
c(t)=\exp (t A)=\sum_{n=0}^{\infty} \frac{1}{n!} t^{n} A^{n} .
$$

Here A is an $n \times n$ matrix whose (i, j)-component is given by $A_{i j}$.
(2) Let us consider a Lie group $S O(n, \mathbb{R})$ defined by

$$
S O(n, \mathbb{R})=\left\{O \in G L(n, \mathbb{R}) \mid O^{T} O=I_{n} \text { and } \operatorname{det} O=1\right\}
$$

Here I_{n} is the $n \times n$ unit matrix and O^{T} is the transpose of O.

1. Let us consider the one-parameter subgroup $c(t)=\exp (t A)$ of $S O(n, \mathbb{R})$ (here A is a real $n \times n$ matrix). Show that A satisfies $A+A^{T}=0$.
2. What is the dimension of of the Lie algebra $\mathfrak{s o}(n, \mathbb{R})$?
3. Let us consider the case $n=3$. In this case, confirm that we can write A in general as

$$
A=a_{1} A_{1}+a_{2} A_{2}+a_{3} A_{3},
$$

where $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ and A_{1}, A_{2}, A_{3} are defined by

$$
A_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Compute the commutator of A_{i} 's to show

$$
\left[A_{i}, A_{j}\right]=A_{i} A_{j}-A_{j} A_{i}=\sum_{k} \epsilon_{i j k} A_{k},
$$

where $\epsilon_{i j k}$ is the totally anti-symmetric tensor satisfying $\epsilon_{123}=1$.
(3) Let us consider a Lie group $S p(2 n, \mathbb{R})$ defined by

$$
S p(2 n, \mathbb{R})=\left\{M \in G L(2 n, \mathbb{R}) \mid M^{T} J M=J\right\}
$$

Here $2 n \times 2 n$ matrix J is defined by

$$
J=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) .
$$

Carry out the same analysis as Problem (2)-1 and (2)-2 for $S p(2 n, \mathbb{R})$. (That is, consider the one-parameter subgroup $c(t)=\exp (t A)$ (here A is a $2 n \times 2 n$ real matrix) and determine the constraint on A. Compute the dimension of the Lie algebra $\mathfrak{s p}(2 n, \mathbb{R})$.)

Note on Revision

Janurary 232015
Some correction in Problem 3.

