Solution Set for Exercise Session No. 1
 Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1) 13th November, 2014, at Room 235A

Lecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr)
Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 Some Basics

(1)

1. Let us call the two elements of the group G as e and g (here e is the unit and $g \neq e$). If $g \cdot g=g$, then we can multiply g^{-1} from left to have $g=e$. This is inconsistent with the assumption $g \neq e$. Therefore, it follows that $g \cdot g=e$ (or in other words, $g^{-1}=g$).
To summarize, the multiplication table is given by

	e	g
e	e	g
g	g	e

One can confirm from this table that $\{e, g\}$ is a group (associativity, ...).
This multiplication table (and thus the group of order 2) is of course unique. From this table, it is obvious that this group is Abelian (symmetric under the reflection with respect to the diagonal line).
2. Let us call the three elements of the group G as e, g_{1} and g_{2} (here e is the unit, and e, g_{1} and g_{2} are different elements).
We first notice that $g_{1} \cdot g_{2}=g_{2} \cdot g_{1}=e$ (if $g_{1} \cdot g_{2}=g_{1}$ or g_{2}, then we can multiply g_{1}^{-1} from the left or g_{2}^{-1} from the right, to get $g_{2}=e$ or $g_{1}=e$. This is inconsistent with the assumption. Thus we have confirmed that $g_{1} \cdot g_{2}=e$. A similar argument shows $\left.g_{2} \cdot g_{1}=e\right)$. This then means that $g_{2}=g_{1}^{-1}\left(\right.$ and $\left.g_{2}^{-1}=g_{1}\right)$.
Let us next consider $g_{1} \cdot g_{1}$. If $g_{1} \cdot g_{1}=e$ or g_{1}, then we can multiply g_{1}^{-1} from left (or right, whichever is fine) to get $g_{1}=g_{1}^{-1}\left(=g_{2}\right)$ or $g_{1}=e$. This is inconsistent with the assumption. Therefore, we conclude that $g_{1} \cdot g_{1}=g_{1}^{-1}$. By multiplying g_{1}^{-1} from left or right, we also get $g_{1}^{-1} \cdot g_{1}^{-1}=g_{1}$.
To summarize, the multiplication table is written as

	e	g_{1}	g_{1}^{-1}
e	e	g_{1}	g_{1}^{-1}
g_{1}	g_{1}	g_{1}^{-1}	e
g_{1}^{-1}	g_{1}^{-1}	e	g_{1}

One can confirm from this table that $\left\{e, g_{1}, g_{2}\right\}$ is a group (associativity, \ldots).
This multiplication table (and thus the group of order 3) is of course unique. From this table, it is obvious that this group is Abelian (symmetric under the reflection with respect to the diagonal line).
3. Since G is a group, $g_{i} g \in G$ for elements $g_{i}, g \in G$. For $g_{i}, g_{j} \in G\left(g_{i} \neq g_{j}\right)$, if $g_{i} g=g_{j} g$, then by multiplying g^{-1} from the right, we have $g_{i}=g_{j}$. This is inconsistent with the assumption. Thus we conclude that $g_{i} g \neq g_{j} g$ for $g_{i}, g_{j} \in G$ $\left(g_{i} \neq g_{j}\right)$. Therefore, $\left\{g_{1} g, g_{2} g, \cdots, g g_{r} g\right\}$ contains all the elements of G and each element of G appears one and only one time.
4. Let us call the four elements of the group G as e, a, b and c (here e is the unit, and e, a, b and c are all different). It is easy to fill out some part of the multiplication table as

	e	a	b	c
e	e	a	b	c
a	a			
b	b			
c	c			

Let us now focus on $a \cdot a$. If $a \cdot a=a$, then by multiplying a^{-1} from the left, we have $a=e$. This is inconsistent with the assumption. Therefore, it follows that $a \cdot a=e, b$ or c. Without loss of generality, we can take as $a \cdot a=e$ or b.
We first consider the case with $a \cdot a=b$. By noticing that each element of G appears one and only one time in each column/row, we can fill out the table in the following way. First, we have

	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b	b	c		
c	c	e		

Then we in the end have

	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b	b	c	e	a
c	c	e	a	b

Table 1: The first case
Let us now consider another case: $a \cdot a=e$. By noticing that each element of G appears only one time in each column/row, we can fill out the table in the following way. First, we have

	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c		
c	c	b		

To fill out the rest part, there are two possibilities : (1) $b \cdot b=c \cdot c=e$ and $b \cdot c=c \cdot b=a(2) b \cdot b=c \cdot c=a$ and $b \cdot c=c \cdot b=e$. The second case, however, is the same as Table 1 with a and b exchanged. Thus the second possibility is

	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

Table 2: The second case
To summarize, there are two possibilities: Table 1 and 2 . One can confirm from these tables that $\{e, a, b, c\}$ is a group (associativity, ...). From these Tables, it is obvious that both of these groups of order 4 are Abelian.
(2) By definition, the left and right inverses of g, if exist, need to satisfy (by denoting them by g_{1} and g_{2})

$$
\left(g_{1} \cdot g\right)(n)=g_{1}(g(n))=i d(n)=n, \quad\left(g \cdot g_{2}\right)(n)=g\left(g_{2}(n)\right)=i d(n)=n
$$

respectively, for $\forall n \in \mathbb{N}$. Thus, the left inverse, if it exists, needs to satisfy $g_{1}(g(n))=n$ which is equivalent to

$$
g_{1}(n-1)=n \quad(\text { for } n \geq 2), \quad g_{1}(1)=1 \quad(\text { for } n=1),
$$

From the first relation, g_{1} needs to be taken as $g_{1}(n)=n+1$ for $n \geq 1$, but this indicates $g_{1}(1)=2$ which is obviously inconsistent with the second relation. Therefore there is no left inverse.

On the other hand, the right inverse, if it exists, needs to satisfy $g\left(g_{2}(n)\right)=n$ which is equivalent to

$$
g_{2}(n)-1=n \quad\left(\text { for } g_{2}(n) \geq 2\right), \quad n=1 \quad\left(\text { for } g_{2}(n)=1\right)
$$

Thus we can take g_{2} as

$$
g_{2}(n)= \begin{cases}n+1 & (n \geq 2) \\ 1 & (n=1)\end{cases}
$$

Therefore there exists a right inverse.

2 Dihedral Group D_{3} : Symmetry of Equilateral Triangle

1. We can fill out the multiplication table as follows:

	e	c_{3}	c_{3}^{-1}	σ_{1}	σ_{2}	σ_{3}
e	e	c_{3}	c_{3}^{-1}	σ_{1}	σ_{2}	σ_{3}
c_{3}	c_{3}	c_{3}^{-1}	e	σ_{3}	σ_{1}	σ_{2}
c_{3}^{-1}	c_{3}^{-1}	e	c_{3}	σ_{2}	σ_{3}	σ_{1}
σ_{1}	σ_{1}	σ_{2}	σ_{3}	e	c_{3}	c_{3}^{-1}
σ_{2}	σ_{2}	σ_{3}	σ_{1}	c_{3}^{-1}	e	c_{3}
σ_{3}	σ_{3}	σ_{1}	σ_{2}	c_{3}	c_{3}^{-1}	e

Table 3: Multiplication table for D_{3}
Here are some detail of the explicit multiplication. Fist let us call the location of the vertices $1,2,3$ in the Figure (I mean at the beginning) as the location 1, 2, 3, respectively. Then by $\left(m_{1}, m_{2}, m_{3}\right)$, we denote that vertices $1,2,3$ are located at the location m_{1}, m_{2}, m_{3}, respectively, after transformation(s). Then we can denote the transformations as

- $e:(1,2,3) \rightarrow(1,2,3)$
- $c_{3}:(1,2,3) \rightarrow(2,3,1)$
- $c_{3}^{-1}:(1,2,3) \rightarrow(3,1,2)$
- $\sigma_{1}:(1,2,3) \rightarrow(1,3,2)$
- $\sigma_{2}:(1,2,3) \rightarrow(3,2,1)$
- $\sigma_{3}:(1,2,3) \rightarrow(2,1,3)$

Then, as an example, let us consider $c_{3} \cdot c_{3}, \sigma_{1} \cdot c_{3}, c_{3} \cdot \sigma_{2}$ and $\sigma_{1} \cdot \sigma_{2}$. They move the vertices $1,2,3$ as

- $c_{3} \cdot c_{3}:(1,2,3) \rightarrow(2,3,1) \rightarrow(3,1,2)$
- $\sigma_{1} \cdot c_{3}:(1,2,3) \rightarrow(2,3,1) \rightarrow(3,2,1)$
- $c_{3} \cdot \sigma_{2}:(1,2,3) \rightarrow(3,2,1) \rightarrow(1,3,2)$
- $\sigma_{1} \cdot \sigma_{2}:(1,2,3) \rightarrow(3,2,1) \rightarrow(2,3,1)$

Therefore we have

$$
c_{3} \cdot c_{3}=c_{3}^{-1}, \quad \sigma_{1} \cdot c_{3}=\sigma_{2}, \quad c_{3} \cdot \sigma_{2}=\sigma_{1}, \quad \sigma_{1} \cdot \sigma_{2}=c_{3}
$$

One can determine the other entries of the multiplication table in the same way.
2. The followings are the subgroups of D_{3} :

$$
H_{1}=\left\{e, c_{3}, c_{3}^{-1}\right\}, \quad H_{2}=\left\{e, \sigma_{1}\right\}, \quad H_{3}=\left\{e, \sigma_{2}\right\}, \quad H_{4}=\left\{e, \sigma_{3}\right\}
$$

Here is a one way to derive them. First of all, let us find a subgroup containing e and c_{3}. Then, it needs to contain c_{3}^{-1}. Then $H_{1}=\left\{e, c_{3}, c_{3}^{-1}\right\}$ forms a subgroup. Similarly starting with e and c_{3}^{-1}, one can get H_{1}. Now we consider a subgroup containing e, c_{3}, c_{3}^{-1} as well as σ_{1}. Then σ_{2} and σ_{3} need to be included to form a subgroup. This is D_{3} itself. The result is the same even when one starts with σ_{2} or σ_{3} instead of σ_{1}.
Let us next start with e and σ_{1}. These two elements form a subgroup $H_{2}=\left\{e, \sigma_{1}\right\}$. Once one adds $\sigma_{2}, \sigma_{3}, c_{3}$ or c_{3}^{-1}, then, to form a subgroup, one needs to add all the elements of D_{3}. Therefore one always ends up with D_{3} itself. The argument is the same when we start with e and σ_{2} or σ_{3}.
Therefore the only nontrivial subgroups are $H_{1}=\left\{e, c_{3}, c_{3}^{-1}\right\}, H_{2}=\left\{e, \sigma_{1}\right\}, H_{3}=$ $\left\{e, \sigma_{2}\right\}$, and $H_{3}=\left\{e, \sigma_{3}\right\}$ only.

Note: Here is a little bit quicker way to construct subgroups. In the lecture, it is shown that the order of a subgroup H of a group G divides the order of G. Since the order of S_{3} is $3!=6$, the order of the subgroup should be either $1,2,3$ or 6 . This fact simplifies some steps above. The subgroup of order 1 and 6 are trivial subgroups, $\{e\}$ and D_{3}, respectively. Thus the nontrivial subgroups have the order either 2 or 3 . Therefore, in the above step, once one have to add more than three, one will end up with D_{3}.
3. We first recall the definition of the left coset decomposition. For a group G and its subgroup H, the left coset decomposition of G is

$$
G=H g_{1}+H g_{2}+\cdots H g_{n}, \quad\left(H g_{i} \cap H g_{j}=\emptyset \text { for } i \neq j\right)
$$

for some $g_{i} \in G\left(i=1,2, \cdots n\right.$, and $g_{i} \neq g_{j}$ for $\left.i \neq j\right)$. Usually g_{1} is set to the unit, $g_{1}=e$.

For each subgroup $H_{i}(i=1,2,3,4), H_{i} g\left(g \in D_{3}\right)$ is computed as

$$
H_{1} e=\left\{e, c_{3}, c_{3}^{-1}\right\}, \quad H_{1} c_{3}=\left\{c_{3}, c_{3}^{-1}, e\right\}, \quad H_{1} c_{3}^{-1}=\left\{c_{3}^{-1}, e, c_{3}\right\}
$$

$$
\begin{array}{lcc}
H_{1} \sigma_{1}=\left\{\sigma_{1}, \sigma_{3}, \sigma_{2}\right\}, \quad H_{1} \sigma_{2}=\left\{\sigma_{2}, \sigma_{1}, \sigma_{3}\right\}, & H_{1} \sigma_{3}=\left\{\sigma_{3}, \sigma_{2}, \sigma_{1}\right\}, \\
H_{2} e=\left\{e, \sigma_{1}\right\}, & H_{2} c_{3}=\left\{c_{3}, \sigma_{2}\right\}, & H_{2} c_{3}^{-1}=\left\{c_{3}^{-1}, \sigma_{3}\right\} \\
H_{2} \sigma_{1}=\left\{\sigma_{1}, e\right\}, & H_{2} \sigma_{2}=\left\{\sigma_{2}, c_{3}\right\}, & H_{2} \sigma_{3}=\left\{\sigma_{3}, c_{3}^{-1}\right\} \\
H_{3} e=\left\{e, \sigma_{2}\right\}, & H_{3} c_{3}=\left\{c_{3}, \sigma_{3}\right\}, & H_{3} c_{3}^{-1}=\left\{c_{3}^{-1}, \sigma_{1}\right\} \\
H_{3} \sigma_{1}=\left\{\sigma_{1}, c_{3}^{-1}\right\}, & H_{3} \sigma_{2}=\left\{\sigma_{2}, e\right\}, & H_{3} \sigma_{3}=\left\{\sigma_{3}, c_{3}\right\} \\
H_{4} e=\left\{e, \sigma_{3}\right\}, & H_{4} c_{3}=\left\{c_{3}, \sigma_{1}\right\}, & H_{4} c_{3}^{-1}=\left\{c_{3}^{-1}, \sigma_{2}\right\} \\
H_{4} \sigma_{1}=\left\{\sigma_{1}, c_{3}\right\}, & H_{4} \sigma_{2}=\left\{\sigma_{2}, c_{3}^{-1}\right\}, & H_{4} \sigma_{3}=\left\{\sigma_{3}, e\right\} \tag{2.1}
\end{array}
$$

Thus we have the following ways of the decomposition of D_{3}

$$
\begin{aligned}
D_{3} & =H_{1}+H_{1} \sigma_{i} \quad(i=1,2,3), \\
D_{3} & =H_{2}+H_{2} \sigma_{2}+H_{2} \sigma_{3}=H_{2}+H_{2} c_{3}+H_{2} \sigma_{3} \\
& =H_{2}+H_{2} \sigma_{2}+H_{2} c_{3}^{-1}=H_{2}+H_{2} c_{3}+H_{2} c_{3}^{-1} \\
D_{3} & =H_{3}+H_{3} \sigma_{1}+H_{3} \sigma_{3}=H_{3}+H_{3} c_{3}^{-1}+H_{3} c_{3} \\
& =H_{3}+H_{3} \sigma_{1}+H_{3} c_{3}=H_{3}+H_{3} c_{3}^{-1}+H_{3} \sigma_{3} \\
D_{3} & =H_{4}+H_{4} \sigma_{1}+H_{4} \sigma_{2}=H_{4}+H_{4} c_{3}+H_{4} \sigma_{2} \\
& =H_{4}+H_{4} \sigma_{1}+H_{4} c_{3}^{-1}=H_{4}+H_{4} c_{3}+H_{4} c_{3}^{-1}
\end{aligned}
$$

4. We first notice that

$$
\begin{array}{lcc}
e H_{1}=\left\{e, c_{3}, c_{3}^{-1}\right\}, & c_{3} H_{1}=\left\{c_{3}, c_{3}^{-1}, e\right\}, & c_{3}^{-1} H_{1}=\left\{c_{3}^{-1}, e, c_{3}\right\} \\
\sigma_{1} H_{1}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}, & \sigma_{2} H_{1}=\left\{\sigma_{2}, \sigma_{3}, \sigma_{1}\right\}, & \sigma_{3} H_{1}=\left\{\sigma_{3}, \sigma_{1}, \sigma_{2}\right\}, \\
e H_{2}=\left\{e, \sigma_{1}\right\}, & c_{3} H_{2}=\left\{c_{3}, \sigma_{3}\right\}, & c_{3}^{-1} H_{2}=\left\{c_{3}^{-1}, \sigma_{2}\right\} \\
\sigma_{1} H_{2}=\left\{\sigma_{1}, e\right\}, & \sigma_{2} H_{2}=\left\{\sigma_{2}, c_{3}^{-1}\right\}, & \sigma_{3} H_{2}=\left\{\sigma_{3}, c_{3}\right\} \\
e H_{3}=\left\{e, \sigma_{2}\right\}, & c_{3} H_{3}=\left\{c_{3}, \sigma_{1}\right\}, & c_{3}^{-1} H_{3}=\left\{c_{3}^{-1}, \sigma_{3}\right\} \\
\sigma_{1} H_{3}=\left\{\sigma_{1}, c_{3}\right\}, & \sigma_{2} H_{3}=\left\{\sigma_{2}, e\right\}, & \sigma_{3} H_{3}=\left\{\sigma_{3}, c_{3}^{-1}\right\} \\
e H_{4}=\left\{e, \sigma_{3}\right\}, & c_{3} H_{4}=\left\{c_{3}, \sigma_{2}\right\}, & c_{3}^{-1} H_{4}=\left\{c_{3}^{-1}, \sigma_{1}\right\} \\
\sigma_{1} H_{4}=\left\{\sigma_{1}, c_{3}^{-1}\right\}, & \sigma_{2} H_{4}=\left\{\sigma_{2}, c_{3}\right\}, & \sigma_{3} H_{4}=\left\{\sigma_{3}, e\right\}
\end{array}
$$

By comparing with (2.1), the normal subgroup (a subgroup H satisfying $g H=H g$ for arbitrary $\left.g \in D_{3}\right)$ is $H_{1}=\left\{e, c_{3}, c_{3}^{-1}\right\}$ only.
5. We first recall the definition of the conjugacy class. For a group G, the elements a and b are conjugate when $g a g^{-1}=b, \exists g \in G$. One can see that this is the equivalence relation (that is, $a \sim b$ is defined by $g a g^{-1}=b, \exists g \in G$). Then the conjugacy class of $a \in G$ is defined by $C(a)=\left\{g a g^{-1} \mid g \in G\right\}$.

We can construct the conjugacy class systematically in the following way. In Table $3,(i, j)$-element is $g_{i} \cdot g_{j}$ (where $g_{1}=e, g_{2}=c_{3}, \cdots$). Therefore, if one multiplies g_{i}^{-1} from the right to (i, j)-element that element turns to $g_{i} \cdot g_{j} \cdot g_{i}^{-1}$ and thus all the elements in the j-th column become conjugate to g_{j}. Then, the elements in j-th column after multiplied by g_{i}^{-1} from the right to (i, j)-element form the conjugacy class (corresponding to g_{j}).

	$e \cdot g_{i}^{-1}$	$c_{3} \cdot g_{i}^{-1}$	$c_{3}^{-1} \cdot g_{i}^{-1}$	$\sigma_{1} \cdot g_{i}^{-1}$	$\sigma_{2} \cdot g_{i}^{-1}$	$\sigma_{3} \cdot g_{i}^{-1}$
e	e	c_{3}	c_{3}^{-1}	σ_{1}	σ_{2}	σ_{3}
c_{3}	e	c_{3}	c_{3}^{-1}	σ_{2}	σ_{3}	σ_{1}
c_{3}^{-1}	e	c_{3}	c_{3}^{-1}	σ_{3}	σ_{1}	σ_{2}
σ_{1}	e	c_{3}^{-1}	c_{3}	σ_{1}	σ_{3}	σ_{2}
σ_{2}	e	c_{3}^{-1}	c_{3}	σ_{3}	σ_{2}	σ_{1}
σ_{3}	e	c_{3}^{-1}	c_{3}	σ_{2}	σ_{1}	σ_{3}

Table 4: Table to find the conjugacy classes of D_{3}

By multiplying g_{i}^{-1} from the right to (i, j)-element $g_{i} \cdot g_{j}$, we obtain Table 4.
We recall that

$$
e^{-1}=e, \quad c_{3}=c_{3}^{-1}, \quad \sigma_{i}^{-1}=\sigma_{i} \quad(\text { for } i=1,2,3)
$$

From this, we have three conjugacy classes for the group D_{3} :

$$
\{e\}, \quad\left\{c_{3}, c_{3}^{-1}\right\}, \quad\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}
$$

-memo-
(i) Here we check that, for $a, b \in G$, " $a \sim b \Leftrightarrow g a g^{-1}=b$ for some $g \in G$ " is an equivalence relation. First of all, $a \sim a$ (for $a \in G$) is satisfied since $e a e^{-1}=a$ for the unit element e of G. Secondly, when $a \sim b$ (for $a, b \in G$), there exists $g \in G$ such that $g a g^{-1}=b$ and thus by multiplying g^{-1} from the left and g from the right, we obtain $a=g^{-1} b g=g^{-1} b\left(g^{-1}\right)^{-1}$. Thus we have $b \sim a$. Finally when $a \sim b$ and $b \sim c$ (for $a, b, c \in G)$, there exist $g, h \in G$ such that $g a g^{-1}=b$ and $h b h^{-1}=c$. Then we have $c=h g a g^{-1} h^{-1}=(h g) a(h g)^{-1}$ and thus $a \sim c$. Therefore we have confirmed that this relation is indeed an equivalence relation.
(ii) Here is a definition of left coset decomposition of a group G. Let us consider a subgroup H of G. Then we the left coset decomposition is given by

$$
G=H g_{1}+H g_{2}+\cdots+H g_{n}
$$

for some $g_{i} \in G(i=1,2,3, \cdots, n)$ satisfying $H g_{i} \cap H g_{j}=\emptyset$ for $i \neq j$. Usually g_{1} is taken as the unit element e of G. We can carry out the right coset decomposition in a similar way.

We note that for $g, g^{\prime} \in G, H g=H g^{\prime}$ or $H g \cap H g^{\prime}=\emptyset$. This can be checked as follows. If not disjoint, then there exist $h_{1}, h_{2} \in H$ such that $h_{1} g=h_{2} g^{\prime}$. This leads to $g=h_{1}^{-1} h_{2} g^{\prime}$. Since an element of $H g$ is of the form $h g(h \in H)$, we have $h g=h h_{1}^{-1} h_{2} g^{\prime} \in H g^{\prime}$. Therefore $H g \subset H g^{\prime}$. In the same way, we can show that $H g \supset H g^{\prime}$. Thus we conclude that $H g=H g^{\prime}$.

3 Permutation Group

1. There are $3!=6$ ways of permuting $(1,2,3)$. Thus the order of S_{3} is 6 .
2. We can carry out the multiplication in the following way :

$$
\begin{aligned}
\pi_{1} \cdot \pi_{2} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 3 & 2 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) .
\end{aligned}
$$

3. We first recall that the elements of S_{3} are

$$
\begin{array}{lll}
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), & \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), & \left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \\
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), & \left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), & \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) .
\end{array}
$$

From the elements

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right),
$$

we can generate the rest of the elements of S_{3} as follows :

$$
\begin{aligned}
& \tau_{1}^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \\
& \tau_{1}^{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \\
& \tau_{2} \tau_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 3 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \\
& \tau_{1} \tau_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\left(\begin{array}{lll}
2 & 1 & 3 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) .
\end{aligned}
$$

4. Let us recall Figure in Problem 2. Then the elements of D_{3} can be regarded as the permutation of the vertices $(1,2,3)$. More precisely, let us denote the location of the vertices $1,2,3$ at the beginning as the location $1,2,3$. Then we denote the operation to move the vertices $1,2,3$ located at the location $1,2,3$ to the location m_{1}, m_{2}, m_{3} as

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
m_{1} & m_{2} & m_{3}
\end{array}\right) .
$$

Then we can identifies the permutations with the elements of D_{3} as

$$
\begin{aligned}
& e \leftrightarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \quad c_{3} \quad \leftrightarrow \quad\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \quad c_{3}^{-1} \quad \leftrightarrow \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \\
& \sigma_{1} \leftrightarrow\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \quad \sigma_{2} \quad \leftrightarrow \quad\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \quad \sigma_{3} \quad \leftrightarrow \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) .
\end{aligned}
$$

(2) We first confirm that $H=\{\pi(g) \mid g \in G\}$ is a subgroup of S_{n} or S_{n} itself. Since $\pi(g)$ is a permutation of n-elements, it is obvious that $H \subset S_{n}$. Then the next step is to show that H is a group:

- For $a, b \in G$, we have

$$
\begin{align*}
\pi(a) \pi(b) & =\left(\begin{array}{cccc}
g_{1} & g_{2} & \cdots & g_{n} \\
a g_{1} & a g_{2} & \cdots & a g_{n}
\end{array}\right)\left(\begin{array}{cccc}
g_{1} & g_{2} & \cdots & g_{n} \\
b g_{1} & b g_{2} & \cdots & b g_{n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
b g_{1} & b g_{2} & \cdots & b g_{n} \\
a b g_{1} & a b g_{2} & \cdots & a b g_{n}
\end{array}\right)\left(\begin{array}{cccc}
g_{1} & g_{2} & \cdots & g_{n} \\
b g_{1} & b g_{2} & \cdots & b g_{n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
g_{1} & g_{2} & \cdots & g_{n} \\
a b g_{1} & a b g_{2} & \cdots & a b g_{n}
\end{array}\right) \\
& =\pi(a b) \in H . \tag{3.1}
\end{align*}
$$

- Let us denote the unit element of G as e. Then

$$
\pi(e)=\left(\begin{array}{cccc}
g_{1} & g_{2} & \cdots & g_{n} \\
e g_{1} & e g_{2} & \cdots & e g_{n}
\end{array}\right)=\left(\begin{array}{cccc}
g_{1} & g_{2} & \cdots & g_{n} \\
g_{1} & g_{2} & \cdots & g_{n}
\end{array}\right)
$$

Thus $\pi(e) \in H$ is the unit of S_{n}.

- Let us consider $a \in G$ and denote its inverse as $a^{-1} \in G$. Then we have

$$
\pi\left(a^{-1}\right)=\left(\begin{array}{cccc}
g_{1} & g_{2} & \cdots & g_{n} \\
a^{-1} g_{1} & a^{-1} g_{2} & \cdots & a^{-1} g_{n}
\end{array}\right)=\left(\begin{array}{cccc}
a g_{1} & a g_{2} & \cdots & a g_{n} \\
g_{1} & g_{2} & \cdots & g_{n}
\end{array}\right)=(\pi(a))^{-1} .
$$

Thus we have shown that $\pi\left(a^{-1}\right) \in H$ is the inverse of $\pi(a) \in H$.
From these, we conclude that H is a subgroup of S_{n} or S_{n} itself.
As a next step, we confirm that π is an isomorphic map from G to H. From (3.1), it is obvious that π is homomorphic. For different two elements $a, b \in G(a \neq b), a g_{i} \neq b g_{i}$ since the same element never appears in each column of the multiplication table of G. Thus we conclude that $a \neq b \rightarrow \pi(a) \neq \pi(b)$. This means that π is an injection. By construction of π, it is obvious that π is a surjection. Therefore π is an isomorphism from G to H.

From the above results, we conclude that a group G of order n is isomorphic to a subgroup of S_{n} or S_{n} itself.
(3) We first notice that

$$
\sigma \pi \sigma^{-1}=\sigma\left(p_{1}^{(1)} p_{2}^{(1)} \cdots p_{\lambda_{1}}^{(1)}\right) \sigma^{-1} \sigma\left(p_{1}^{(2)} p_{2}^{(2)} \cdots p_{\lambda_{2}}^{(2)}\right) \sigma^{-1} \sigma \cdots \sigma^{-1} \sigma\left(p_{1}^{(r)} p_{2}^{(r)} \cdots p_{\lambda_{r}}^{(r)}\right) \sigma^{-1}
$$

Thus it is enough to show that

$$
\sigma\left(p_{1}^{(1)} p_{2}^{(1)} \cdots p_{\lambda_{1}}^{(1)}\right) \sigma^{-1}=\left(q_{1}^{(1)} q_{2}^{(1)} \cdots q_{\lambda_{1}}^{(1)}\right),
$$

for some $q_{1}^{(1)}, q_{2}^{(1)}, \cdots, q^{(1)}$. From now on, we denote $\left(p_{1}^{(1)} p_{2}^{(1)} \cdots p_{\lambda_{1}}^{(1)}\right)$ as π for simplicity.

Let us denote σ as

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
m_{1} & m_{2} & \cdots & m_{n}
\end{array}\right) .
$$

Let us consider the case in which π is given by

$$
\pi=\left(\begin{array}{cccccccc}
1 & 2 & \cdots & \lambda_{1}-1 & \lambda_{1} & \lambda_{1}+1 & \cdots & n \\
2 & 3 & \cdots & \lambda_{1} & 1 & \lambda_{1}+1 & \cdots & n
\end{array}\right),
$$

(that is, when $\left.\left(p_{1}^{(1)} p_{2}^{(1)} \cdots p_{\lambda_{1}}^{(1)}\right)=\left(12 \cdots \lambda_{1}\right)\right)$. Then we have

$$
\begin{aligned}
& \sigma \pi \sigma^{-1} \\
& =\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
m_{1} & m_{2} & \cdots & m_{n}
\end{array}\right)\left(\begin{array}{cccccccc}
1 & 2 & \cdots & \lambda_{1}-1 & \lambda_{1} & \lambda_{1}+1 & \cdots & n \\
2 & 3 & \cdots & \lambda_{1} & 1 & \lambda_{1}+1 & \cdots & n
\end{array}\right)\left(\begin{array}{cccc}
m_{1} & m_{2} & \cdots & m_{n} \\
1 & 2 & \cdots & n
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
m_{1} & m_{2} & \cdots & m_{n}
\end{array}\right)\left(\begin{array}{cccccccc}
m_{1} & m_{2} & \cdots & m_{\lambda_{1}-1} & m_{\lambda_{1}} & m_{\lambda_{1}+1} & \cdots & m_{n} \\
2 & 3 & \cdots & \lambda_{1} & 1 & \lambda_{1}+1 & \cdots & n
\end{array}\right) \\
& =\left(\begin{array}{cccccccc}
m_{1} & m_{2} & \cdots & m_{\lambda_{1}-1} & m_{\lambda_{1}} & m_{\lambda_{1}+1} & \cdots & m_{n} \\
m_{2} & m_{3} & \cdots & m_{\lambda_{1}} & m_{1} & m_{\lambda_{1}+1} & \cdots & m_{n}
\end{array}\right) \\
& =\left(\begin{array}{cccccccc}
m_{\lambda_{1}} & m_{1} & m_{2} & \cdots & m_{\lambda_{1}-1} & m_{\lambda_{1}+1} & \cdots & m_{n} \\
m_{1} & m_{2} & m_{3} & \cdots & m_{\lambda_{1}} & m_{\lambda_{1}+1} & \cdots & m_{n}
\end{array}\right),
\end{aligned}
$$

which is the cycle $\left(q_{1}^{(1)} q_{2}^{(1)} \cdots q_{\lambda_{1}}^{(1)}\right)=\left(m_{1} m_{2} m_{3} \cdots m_{\lambda_{1}}\right)$. For more general π, we can confirm the statement in a similar way.
Note on cycle decomposition
We can confirm the cycle decomposition of an element $\pi \in S_{n}$ as follows. We notice that π is a permutation of $\{1,2,3, \cdots, n\}$. For $a \in\{1,2,3, \cdots, n\}$, we consider the sequence

$$
a, \pi(a), \pi^{2}(a), \cdots .
$$

When there exist k and $l<k$ such that $\pi^{k}(a)=\pi^{l}(a)$, then we have $\pi^{k-l}(a)=a$. Thus, by taking the smallest $r=k-l$, we obtain a cycle $\left(a \pi(a) \cdots \pi^{r-1}(a)\right)$. We call this cycle as π_{a}.

Now we take another element $b \in\{1,2,3, \cdots, n\}$ such that $b \notin\left\{a, \pi(a), \cdots, \pi^{r-1}(a)\right\}$. We can then similarly construct a cycle $\left(b \pi(b) \cdots \pi^{s-1}(b)\right)$ for some s. We call this as π_{b}.

Now we confirm that $\left\{a, \pi(a), \cdots, \pi^{r-1}(a)\right\}$ and $\left\{b, \pi(b), \cdots, \pi^{s-1}(b)\right\}$ are disjoint. If there exist $p<r$ and $q<s$ such that $\pi^{p}(a)=\pi^{q}(b)$, then $b=\pi^{p-q}(a)=\pi^{t}(a)$ where $t \equiv$ $p-q(\bmod r)$. This contradicts with the assumption that $b \notin\left\{a, \pi(a), \cdots, \pi^{r-1}(a)\right\}$. Thus we have confirmed that $\left\{a, \pi(a), \cdots, \pi^{r-1}(a)\right\}$ and $\left\{b, \pi(b), \cdots, \pi^{s-1}(b)\right\}$ are disjoint.

By repeating this procedure, we can see that π is decomposed into cycles as $\pi=$ $\pi_{a} \pi_{b} \cdots$ where each element of $\{1,2, \cdots, n\}$ appears one and only one time.

