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1 Some Basics

(1)

1. Let us call the two elements of the group G as e and g (here e is the unit and g 6= e).
If g · g = g, then we can multiply g−1 from left to have g = e. This is inconsistent
with the assumption g 6= e. Therefore, it follows that g · g = e (or in other words,
g−1 = g).

To summarize, the multiplication table is given by

e g

e e g

g g e

One can confirm from this table that {e, g} is a group (associativity, ...).

This multiplication table (and thus the group of order 2) is of course unique. From
this table, it is obvious that this group is Abelian (symmetric under the reflection
with respect to the diagonal line).

2. Let us call the three elements of the group G as e, g1 and g2 (here e is the unit,
and e, g1 and g2 are different elements).

We first notice that g1 · g2 = g2 · g1 = e (if g1 · g2 = g1 or g2, then we can multiply
g−11 from the left or g−12 from the right, to get g2 = e or g1 = e. This is inconsistent
with the assumption. Thus we have confirmed that g1 · g2 = e. A similar argument
shows g2 · g1 = e). This then means that g2 = g−11 (and g−12 = g1).

Let us next consider g1 · g1. If g1 · g1 = e or g1, then we can multiply g−11 from left
(or right, whichever is fine) to get g1 = g−11 (= g2) or g1 = e. This is inconsistent
with the assumption. Therefore, we conclude that g1 · g1 = g−11 . By multiplying
g−11 from left or right, we also get g−11 · g

−1
1 = g1.

To summarize, the multiplication table is written as
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e g1 g−11

e e g1 g−11

g1 g1 g−11 e

g−11 g−11 e g1

One can confirm from this table that {e, g1, g2} is a group (associativity, ...).

This multiplication table (and thus the group of order 3) is of course unique. From
this table, it is obvious that this group is Abelian (symmetric under the reflection
with respect to the diagonal line).

3. Since G is a group, gig ∈ G for elements gi, g ∈ G. For gi, gj ∈ G (gi 6= gj),
if gig = gjg, then by multiplying g−1 from the right, we have gi = gj . This is
inconsistent with the assumption. Thus we conclude that gig 6= gjg for gi, gj ∈ G
(gi 6= gj). Therefore, {g1g, g2g, · · · , ggrg} contains all the elements of G and each
element of G appears one and only one time.

4. Let us call the four elements of the group G as e, a, b and c (here e is the unit, and
e, a, b and c are all different). It is easy to fill out some part of the multiplication
table as

e a b c

e e a b c

a a

b b

c c

Let us now focus on a · a. If a · a = a, then by multiplying a−1 from the left, we
have a = e. This is inconsistent with the assumption. Therefore, it follows that
a · a = e, b or c. Without loss of generality, we can take as a · a = e or b.

We first consider the case with a·a = b. By noticing that each element of G appears
one and only one time in each column/row, we can fill out the table in the following
way. First, we have

e a b c

e e a b c

a a b c e

b b c

c c e

Then we in the end have
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e a b c

e e a b c

a a b c e

b b c e a

c c e a b

Table 1: The first case

Let us now consider another case: a · a = e. By noticing that each element of G
appears only one time in each column/row, we can fill out the table in the following
way. First, we have

e a b c

e e a b c

a a e c b

b b c

c c b

To fill out the rest part, there are two possibilities : (1) b · b = c · c = e and
b · c = c · b = a (2) b · b = c · c = a and b · c = c · b = e. The second case, however, is
the same as Table 1 with a and b exchanged. Thus the second possibility is

e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Table 2: The second case

To summarize, there are two possibilities: Table 1 and 2. One can confirm from
these tables that {e, a, b, c} is a group (associativity, ...). From these Tables, it is
obvious that both of these groups of order 4 are Abelian.

(2) By definition, the left and right inverses of g, if exist, need to satisfy (by denoting
them by g1 and g2)

(g1 · g)(n) = g1(g(n)) = id(n) = n , (g · g2)(n) = g(g2(n)) = id(n) = n ,

respectively, for ∀n ∈ N. Thus, the left inverse, if it exists, needs to satisfy g1(g(n)) = n
which is equivalent to

g1(n− 1) = n (for n ≥ 2) , g1(1) = 1 (for n = 1) ,
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From the first relation, g1 needs to be taken as g1(n) = n+1 for n ≥ 1, but this indicates
g1(1) = 2 which is obviously inconsistent with the second relation. Therefore there is no
left inverse.

On the other hand, the right inverse, if it exists, needs to satisfy g(g2(n)) = n which
is equivalent to

g2(n)− 1 = n (for g2(n) ≥ 2) , n = 1 (for g2(n) = 1) .

Thus we can take g2 as

g2(n) =

{
n+ 1 (n ≥ 2) ,
1 (n = 1) .

Therefore there exists a right inverse.

2 Dihedral Group D3: Symmetry of Equilateral Triangle

1. We can fill out the multiplication table as follows:

e c3 c−13 σ1 σ2 σ3

e e c3 c−13 σ1 σ2 σ3
c3 c3 c−13 e σ3 σ1 σ2
c−13 c−13 e c3 σ2 σ3 σ1
σ1 σ1 σ2 σ3 e c3 c−13

σ2 σ2 σ3 σ1 c−13 e c3
σ3 σ3 σ1 σ2 c3 c−13 e

Table 3: Multiplication table for D3

Here are some detail of the explicit multiplication. Fist let us call the location of
the vertices 1, 2, 3 in the Figure (I mean at the beginning) as the location 1, 2, 3,
respectively. Then by (m1,m2,m3), we denote that vertices 1, 2, 3 are located at
the location m1,m2,m3, respectively, after transformation(s). Then we can denote
the transformations as

• e : (1, 2, 3) → (1, 2, 3)

• c3 : (1, 2, 3) → (2, 3, 1)

• c−13 : (1, 2, 3) → (3, 1, 2)

• σ1 : (1, 2, 3) → (1, 3, 2)

• σ2 : (1, 2, 3) → (3, 2, 1)

• σ3 : (1, 2, 3) → (2, 1, 3)

Then, as an example, let us consider c3 · c3, σ1 · c3, c3 · σ2 and σ1 · σ2. They move
the vertices 1, 2, 3 as
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• c3 · c3 : (1, 2, 3) → (2, 3, 1) → (3, 1, 2)

• σ1 · c3 : (1, 2, 3) → (2, 3, 1) → (3, 2, 1)

• c3 · σ2 : (1, 2, 3) → (3, 2, 1) → (1, 3, 2)

• σ1 · σ2 : (1, 2, 3) → (3, 2, 1) → (2, 3, 1)

Therefore we have

c3 · c3 = c−13 , σ1 · c3 = σ2 , c3 · σ2 = σ1 , σ1 · σ2 = c3 .

One can determine the other entries of the multiplication table in the same way.

2. The followings are the subgroups of D3:

H1 = {e, c3, c−13 } , H2 = {e, σ1} , H3 = {e, σ2} , H4 = {e, σ3} .

Here is a one way to derive them. First of all, let us find a subgroup containing e
and c3. Then, it needs to contain c−13 . Then H1 = {e, c3, c−13 } forms a subgroup.
Similarly starting with e and c−13 , one can get H1. Now we consider a subgroup
containing e, c3, c

−1
3 as well as σ1. Then σ2 and σ3 need to be included to form a

subgroup. This is D3 itself. The result is the same even when one starts with σ2
or σ3 instead of σ1.

Let us next start with e and σ1. These two elements form a subgroup H2 = {e, σ1}.
Once one adds σ2, σ3, c3 or c−13 , then, to form a subgroup, one needs to add all the
elements of D3. Therefore one always ends up with D3 itself. The argument is the
same when we start with e and σ2 or σ3.

Therefore the only nontrivial subgroups are H1 = {e, c3, c−13 }, H2 = {e, σ1}, H3 =
{e, σ2}, and H3 = {e, σ3} only.

Note: Here is a little bit quicker way to construct subgroups. In the lecture, it is
shown that the order of a subgroup H of a group G divides the order of G. Since
the order of S3 is 3! = 6, the order of the subgroup should be either 1, 2, 3 or 6.
This fact simplifies some steps above. The subgroup of order 1 and 6 are trivial
subgroups, {e} and D3, respectively. Thus the nontrivial subgroups have the order
either 2 or 3. Therefore, in the above step, once one have to add more than three,
one will end up with D3.

3. We first recall the definition of the left coset decomposition. For a group G and its
subgroup H, the left coset decomposition of G is

G = Hg1 +Hg2 + · · ·Hgn , (Hgi ∩Hgj = ∅ for i 6= j) ,

for some gi ∈ G (i = 1, 2, · · ·n, and gi 6= gj for i 6= j). Usually g1 is set to the unit,
g1 = e.

For each subgroup Hi (i = 1, 2, 3, 4), Hig (g ∈ D3) is computed as

H1e = {e, c3, c−13 } , H1c3 = {c3, c−13 , e} , H1c
−1
3 = {c−13 , e, c3} ,
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H1σ1 = {σ1, σ3, σ2} , H1σ2 = {σ2, σ1, σ3} , H1σ3 = {σ3, σ2, σ1} ,
H2e = {e, σ1} , H2c3 = {c3, σ2} , H2c

−1
3 = {c−13 , σ3} ,

H2σ1 = {σ1, e} , H2σ2 = {σ2, c3} , H2σ3 = {σ3, c−13 } ,
H3e = {e, σ2} , H3c3 = {c3, σ3} , H3c

−1
3 = {c−13 , σ1} ,

H3σ1 = {σ1, c−13 } , H3σ2 = {σ2, e} , H3σ3 = {σ3, c3} ,
H4e = {e, σ3} , H4c3 = {c3, σ1} , H4c

−1
3 = {c−13 , σ2} ,

H4σ1 = {σ1, c3} , H4σ2 = {σ2, c−13 } , H4σ3 = {σ3, e} . (2.1)

Thus we have the following ways of the decomposition of D3

D3 = H1 +H1σi (i = 1, 2, 3) ,

D3 = H2 +H2σ2 +H2σ3 = H2 +H2c3 +H2σ3

= H2 +H2σ2 +H2c
−1
3 = H2 +H2c3 +H2c

−1
3 ,

D3 = H3 +H3σ1 +H3σ3 = H3 +H3c
−1
3 +H3c3

= H3 +H3σ1 +H3c3 = H3 +H3c
−1
3 +H3σ3 ,

D3 = H4 +H4σ1 +H4σ2 = H4 +H4c3 +H4σ2

= H4 +H4σ1 +H4c
−1
3 = H4 +H4c3 +H4c

−1
3 .

4. We first notice that

eH1 = {e, c3, c−13 } , c3H1 = {c3, c−13 , e} , c−13 H1 = {c−13 , e, c3} ,
σ1H1 = {σ1, σ2, σ3} , σ2H1 = {σ2, σ3, σ1} , σ3H1 = {σ3, σ1, σ2} ,
eH2 = {e, σ1} , c3H2 = {c3, σ3} , c−13 H2 = {c−13 , σ2} ,
σ1H2 = {σ1, e} , σ2H2 = {σ2, c−13 } , σ3H2 = {σ3, c3} ,
eH3 = {e, σ2} , c3H3 = {c3, σ1} , c−13 H3 = {c−13 , σ3} ,
σ1H3 = {σ1, c3} , σ2H3 = {σ2, e} , σ3H3 = {σ3, c−13 } ,
eH4 = {e, σ3} , c3H4 = {c3, σ2} , c−13 H4 = {c−13 , σ1} ,
σ1H4 = {σ1, c−13 } , σ2H4 = {σ2, c3} , σ3H4 = {σ3, e} .

By comparing with (2.1), the normal subgroup (a subgroup H satisfying gH = Hg
for arbitrary g ∈ D3) is H1 = {e, c3, c−13 } only.

5. We first recall the definition of the conjugacy class. For a group G, the elements
a and b are conjugate when gag−1 = b, ∃g ∈ G. One can see that this is the
equivalence relation (that is, a ∼ b is defined by gag−1 = b, ∃g ∈ G). Then the
conjugacy class of a ∈ G is defined by C(a) = {gag−1|g ∈ G}.
We can construct the conjugacy class systematically in the following way. In Table
3, (i, j)-element is gi · gj (where g1 = e, g2 = c3, · · · ). Therefore, if one multiplies
g−1i from the right to (i, j)-element that element turns to gi ·gj ·g−1i and thus all the
elements in the j-th column become conjugate to gj . Then, the elements in j-th
column after multiplied by g−1i from the right to (i, j)-element form the conjugacy
class (corresponding to gj).
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e · g−1i c3 · g−1i c−13 · g
−1
i σ1 · g−1i σ2 · g−1i σ3 · g−1i

e e c3 c−13 σ1 σ2 σ3
c3 e c3 c−13 σ2 σ3 σ1
c−13 e c3 c−13 σ3 σ1 σ2
σ1 e c−13 c3 σ1 σ3 σ2
σ2 e c−13 c3 σ3 σ2 σ1
σ3 e c−13 c3 σ2 σ1 σ3

Table 4: Table to find the conjugacy classes of D3

By multiplying g−1i from the right to (i, j)-element gi · gj , we obtain Table 4.

We recall that

e−1 = e , c3 = c−13 , σ−1i = σi (for i = 1, 2, 3) .

From this, we have three conjugacy classes for the group D3:

{e} , {c3, c−13 } , {σ1, σ2, σ3} .

—–memo—–
(i) Here we check that, for a, b ∈ G, “a ∼ b ⇔ gag−1 = b for some g ∈ G” is an
equivalence relation. First of all, a ∼ a (for a ∈ G) is satisfied since eae−1 = a for the
unit element e of G. Secondly, when a ∼ b (for a, b ∈ G), there exists g ∈ G such that
gag−1 = b and thus by multiplying g−1 from the left and g from the right, we obtain
a = g−1bg = g−1b(g−1)−1. Thus we have b ∼ a. Finally when a ∼ b and b ∼ c (for
a, b, c ∈ G), there exist g, h ∈ G such that gag−1 = b and hbh−1 = c. Then we have
c = hgag−1h−1 = (hg)a(hg)−1 and thus a ∼ c. Therefore we have confirmed that this
relation is indeed an equivalence relation.
(ii) Here is a definition of left coset decomposition of a group G. Let us consider a
subgroup H of G. Then we the left coset decomposition is given by

G = Hg1 +Hg2 + · · ·+Hgn ,

for some gi ∈ G (i = 1, 2, 3, · · · , n) satisfying Hgi∩Hgj = ∅ for i 6= j. Usually g1 is taken
as the unit element e of G. We can carry out the right coset decomposition in a similar
way.

We note that for g, g′ ∈ G, Hg = Hg′ or Hg ∩ Hg′ = ∅. This can be checked
as follows. If not disjoint, then there exist h1, h2 ∈ H such that h1g = h2g

′. This
leads to g = h−11 h2g

′. Since an element of Hg is of the form hg (h ∈ H), we have
hg = hh−11 h2g

′ ∈ Hg′. Therefore Hg ⊂ Hg′. In the same way, we can show that
Hg ⊃ Hg′. Thus we conclude that Hg = Hg′.

3 Permutation Group

1. There are 3! = 6 ways of permuting (1, 2, 3). Thus the order of S3 is 6.

7



Mathematical Aspects of Symmetries in Physics : Solution Set No.1

2. We can carry out the multiplication in the following way :

π1 · π2 =

(
1 2 3
3 1 2

)(
1 2 3
1 3 2

)
=

(
1 3 2
3 2 1

)(
1 2 3
1 3 2

)
=

(
1 2 3
3 2 1

)
.

3. We first recall that the elements of S3 are(
1 2 3
1 2 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,(

1 2 3
1 3 2

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
2 1 3

)
.

From the elements (
1 2 3
2 3 1

)
,

(
1 2 3
2 1 3

)
,

we can generate the rest of the elements of S3 as follows :

τ21 =

(
1 2 3
2 3 1

)(
1 2 3
2 3 1

)
=

(
2 3 1
3 1 2

)(
1 2 3
2 3 1

)
=

(
1 2 3
3 1 2

)
,

τ31 =

(
1 2 3
3 1 2

)(
1 2 3
2 3 1

)
=

(
2 3 1
1 2 3

)(
1 2 3
2 3 1

)
=

(
1 2 3
1 2 3

)
,

τ2τ1 =

(
1 2 3
2 1 3

)(
1 2 3
2 3 1

)
=

(
2 3 1
1 3 2

)(
1 2 3
2 3 1

)
=

(
1 2 3
1 3 2

)
,

τ1τ2 =

(
1 2 3
2 3 1

)(
1 2 3
2 1 3

)
=

(
2 1 3
3 2 1

)(
1 2 3
2 1 3

)
=

(
1 2 3
3 2 1

)
.

4. Let us recall Figure in Problem 2. Then the elements of D3 can be regarded as the
permutation of the vertices (1, 2, 3). More precisely, let us denote the location of
the vertices 1, 2, 3 at the beginning as the location 1, 2, 3. Then we denote the
operation to move the vertices 1, 2, 3 located at the location 1, 2, 3 to the location
m1, m2, m3 as (

1 2 3
m1 m2 m3

)
.

Then we can identifies the permutations with the elements of D3 as

e ↔
(

1 2 3
1 2 3

)
, c3 ↔

(
1 2 3
2 3 1

)
, c−13 ↔

(
1 2 3
3 1 2

)
,

σ1 ↔
(

1 2 3
1 3 2

)
, σ2 ↔

(
1 2 3
3 2 1

)
, σ3 ↔

(
1 2 3
2 1 3

)
.
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(2) We first confirm that H = {π(g)|g ∈ G} is a subgroup of Sn or Sn itself. Since π(g)
is a permutation of n-elements, it is obvious that H ⊂ Sn. Then the next step is to show
that H is a group:

• For a, b ∈ G, we have

π(a)π(b) =

(
g1 g2 · · · gn
ag1 ag2 · · · agn

)(
g1 g2 · · · gn
bg1 bg2 · · · bgn

)
=

(
bg1 bg2 · · · bgn
abg1 abg2 · · · abgn

)(
g1 g2 · · · gn
bg1 bg2 · · · bgn

)
=

(
g1 g2 · · · gn
abg1 abg2 · · · abgn

)
= π(ab) ∈ H . (3.1)

• Let us denote the unit element of G as e. Then

π(e) =

(
g1 g2 · · · gn
eg1 eg2 · · · egn

)
=

(
g1 g2 · · · gn
g1 g2 · · · gn

)
.

Thus π(e) ∈ H is the unit of Sn.

• Let us consider a ∈ G and denote its inverse as a−1 ∈ G. Then we have

π(a−1) =

(
g1 g2 · · · gn

a−1g1 a−1g2 · · · a−1gn

)
=

(
ag1 ag2 · · · agn
g1 g2 · · · gn

)
= (π(a))−1 .

Thus we have shown that π(a−1) ∈ H is the inverse of π(a) ∈ H.

From these, we conclude that H is a subgroup of Sn or Sn itself.
As a next step, we confirm that π is an isomorphic map from G to H. From (3.1), it

is obvious that π is homomorphic. For different two elements a, b ∈ G (a 6= b), agi 6= bgi
since the same element never appears in each column of the multiplication table of G.
Thus we conclude that a 6= b → π(a) 6= π(b). This means that π is an injection. By
construction of π, it is obvious that π is a surjection. Therefore π is an isomorphism
from G to H.

From the above results, we conclude that a group G of order n is isomorphic to a
subgroup of Sn or Sn itself.

(3) We first notice that

σπσ−1 = σ(p
(1)
1 p

(1)
2 · · · p

(1)
λ1

)σ−1σ(p
(2)
1 p

(2)
2 · · · p

(2)
λ2

)σ−1σ · · ·σ−1σ(p
(r)
1 p

(r)
2 · · · p

(r)
λr

)σ−1 .

Thus it is enough to show that

σ(p
(1)
1 p

(1)
2 · · · p

(1)
λ1

)σ−1 = (q
(1)
1 q

(1)
2 · · · q

(1)
λ1

) ,

for some q
(1)
1 , q

(1)
2 , · · · , q(1). From now on, we denote (p

(1)
1 p

(1)
2 · · · p

(1)
λ1

) as π for simplicity.
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Let us denote σ as

σ =

(
1 2 · · · n
m1 m2 · · · mn

)
.

Let us consider the case in which π is given by

π =

(
1 2 · · · λ1 − 1 λ1 λ1 + 1 · · · n
2 3 · · · λ1 1 λ1 + 1 · · · n

)
,

(that is, when (p
(1)
1 p

(1)
2 · · · p

(1)
λ1

) = (12 · · ·λ1) ). Then we have

σπσ−1

=

(
1 2 · · · n
m1 m2 · · · mn

)(
1 2 · · · λ1 − 1 λ1 λ1 + 1 · · · n
2 3 · · · λ1 1 λ1 + 1 · · · n

)(
m1 m2 · · · mn

1 2 · · · n

)
=

(
1 2 · · · n
m1 m2 · · · mn

)(
m1 m2 · · · mλ1−1 mλ1 mλ1+1 · · · mn

2 3 · · · λ1 1 λ1 + 1 · · · n

)
=

(
m1 m2 · · · mλ1−1 mλ1 mλ1+1 · · · mn

m2 m3 · · · mλ1 m1 mλ1+1 · · · mn

)
=

(
mλ1 m1 m2 · · · mλ1−1 mλ1+1 · · · mn

m1 m2 m3 · · · mλ1 mλ1+1 · · · mn

)
,

which is the cycle (q
(1)
1 q

(1)
2 · · · q

(1)
λ1

) = (m1m2m3 · · ·mλ1). For more general π, we can
confirm the statement in a similar way.

Note on cycle decomposition
We can confirm the cycle decomposition of an element π ∈ Sn as follows. We notice that
π is a permutation of {1, 2, 3, · · · , n}. For a ∈ {1, 2, 3, · · · , n}, we consider the sequence

a, π(a), π2(a), · · · .

When there exist k and l < k such that πk(a) = πl(a), then we have πk−l(a) = a. Thus,
by taking the smallest r = k− l, we obtain a cycle (aπ(a) · · ·πr−1(a)). We call this cycle
as πa.

Now we take another element b ∈ {1, 2, 3, · · · , n} such that b /∈ {a, π(a), · · · , πr−1(a)}.
We can then similarly construct a cycle (bπ(b) · · ·πs−1(b)) for some s. We call this as πb.

Now we confirm that {a, π(a), · · · , πr−1(a)} and {b, π(b), · · · , πs−1(b)} are disjoint. If
there exist p < r and q < s such that πp(a) = πq(b), then b = πp−q(a) = πt(a) where t ≡
p−q (mod r). This contradicts with the assumption that b /∈ {a, π(a), · · · , πr−1(a)}. Thus
we have confirmed that {a, π(a), · · · , πr−1(a)} and {b, π(b), · · · , πs−1(b)} are disjoint.

By repeating this procedure, we can see that π is decomposed into cycles as π =
πaπb · · · where each element of {1, 2, · · · , n} appears one and only one time.
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