Solution Set for Exercise Session No. 3
 Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1) 4th December, 2014, at Room 235A
 Lecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr)
 Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 More on Representations

(1)

1. We first recall the multiplication table for D_{3} given in Table 1.

	e	c_{3}	c_{3}^{-1}	σ_{1}	σ_{2}	σ_{3}
e	e	c_{3}	c_{3}^{-1}	σ_{1}	σ_{2}	σ_{3}
c_{3}	c_{3}	c_{3}^{-1}	e	σ_{3}	σ_{1}	σ_{2}
c_{3}^{-1}	c_{3}^{-1}	e	c_{3}	σ_{2}	σ_{3}	σ_{1}
σ_{1}	σ_{1}	σ_{2}	σ_{3}	e	c_{3}	c_{3}^{-1}
σ_{2}	σ_{2}	σ_{3}	σ_{1}	c_{3}^{-1}	e	c_{3}
σ_{3}	σ_{3}	σ_{1}	σ_{2}	c_{3}	c_{3}^{-1}	e

Table 1: Multiplication table for D_{3}
As carried out in the lecture, let us identify $e, c_{3}, c_{3}^{-1}, \sigma_{1}, \sigma_{2}, \sigma_{3}$ with $\mathbf{e}_{1}=(1,0,0,0,0,0)^{T}$, $\mathbf{e}_{2}=(0,1,0,0,0,0)^{T}, \cdots, \mathbf{e}_{6}=(0,0,0,0,0,1)^{T}$. Then under the action of the regular representation $\rho^{(r e g)}(g)$ with $g \in G, \mathbf{v}$ defined by

$$
\begin{aligned}
\mathbf{v} & =\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3}+\alpha_{4} \mathbf{e}_{4}+\alpha_{5} \mathbf{e}_{5}+\alpha_{6} \mathbf{e}_{6} \\
& =\alpha_{1} e+\alpha_{2} c_{3}+\alpha_{3} c_{3}^{-1}+\alpha_{4} \sigma_{1}+\alpha_{5} \sigma_{2}+\alpha_{6} \sigma_{3}
\end{aligned}
$$

transforms as (as we have seen in the lecture, the action of $\rho^{(r e g)}(g)$ with $g \in G$ is to multiply g from the left)

$$
\begin{aligned}
\rho^{(r e g)}(e) \mathbf{v} & =e \mathbf{v}=\alpha_{1} e+\alpha_{2} c_{3}+\alpha_{3} c_{3}^{-1}+\alpha_{4} \sigma_{1}+\alpha_{5} \sigma_{2}+\alpha_{6} \sigma_{3} \\
& =\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3}+\alpha_{4} \mathbf{e}_{4}+\alpha_{5} \mathbf{e}_{5}+\alpha_{6} \mathbf{e}_{6}, \\
\rho^{(r e g)}\left(c_{3}\right) \mathbf{v} & =c_{3} \mathbf{v}=\alpha_{1} c_{3}+\alpha_{2} c_{3}^{-1}+\alpha_{3} e+\alpha_{4} \sigma_{3}+\alpha_{5} \sigma_{1}+\alpha_{6} \sigma_{2} \\
& =\alpha_{1} \mathbf{e}_{2}+\alpha_{2} \mathbf{e}_{3}+\alpha_{3} \mathbf{e}_{1}+\alpha_{4} \mathbf{e}_{6}+\alpha_{5} \mathbf{e}_{4}+\alpha_{6} \mathbf{e}_{5}, \\
\rho^{(r e g)}\left(c_{3}^{-1}\right) \mathbf{v} & =c_{3}^{-1} \mathbf{v}=\alpha_{1} c_{3}^{-1}+\alpha_{2} e+\alpha_{3} c_{3}+\alpha_{4} \sigma_{2}+\alpha_{5} \sigma_{3}+\alpha_{6} \sigma_{1} \\
& =\alpha_{1} \mathbf{e}_{3}+\alpha_{2} \mathbf{e}_{1}+\alpha_{3} \mathbf{e}_{2}+\alpha_{4} \mathbf{e}_{5}+\alpha_{5} \mathbf{e}_{6}+\alpha_{6} \mathbf{e}_{4}, \\
\rho^{(r e g)}\left(\sigma_{1}\right) \mathbf{v} & =\sigma_{1} \mathbf{v}=\alpha_{1} \sigma_{1}+\alpha_{2} \sigma_{2}+\alpha_{3} \sigma_{3}+\alpha_{4} e+\alpha_{5} c_{3}+\alpha_{6} c_{3}^{-1} \\
& =\alpha_{1} \mathbf{e}_{4}+\alpha_{2} \mathbf{e}_{5}+\alpha_{3} \mathbf{e}_{6}+\alpha_{4} \mathbf{e}_{1}+\alpha_{5} \mathbf{e}_{2}+\alpha_{6} \mathbf{e}_{3}, \\
\rho^{(r e g)}\left(\sigma_{2}\right) \mathbf{v} & =\sigma_{2} \mathbf{v}=\alpha_{1} \sigma_{2}+\alpha_{2} \sigma_{3}+\alpha_{3} \sigma_{1}+\alpha_{4} c_{3}^{-1}+\alpha_{5} e+\alpha_{6} c_{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha_{1} \mathbf{e}_{5}+\alpha_{2} \mathbf{e}_{6}+\alpha_{3} \mathbf{e}_{4}+\alpha_{4} \mathbf{e}_{3}+\alpha_{5} \mathbf{e}_{1}+\alpha_{6} \mathbf{e}_{2}, \\
\rho^{(r e g)}\left(\sigma_{3}\right) \mathbf{v} & =\sigma_{3} \mathbf{v}=\alpha_{1} \sigma_{3}+\alpha_{2} \sigma_{1}+\alpha_{3} \sigma_{2}+\alpha_{4} c_{3}+\alpha_{5} c_{3}^{-1}+\alpha_{6} e \\
& =\alpha_{1} \mathbf{e}_{6}+\alpha_{2} \mathbf{e}_{4}+\alpha_{3} \mathbf{e}_{5}+\alpha_{4} \mathbf{e}_{2}+\alpha_{5} \mathbf{e}_{3}+\alpha_{6} \mathbf{e}_{1}
\end{aligned}
$$

Thus we obtain the matrix representation $M^{(r e g)}(g)$ of $\rho^{(r e g)}(g)$ defined as

$$
\rho^{(r e g)}(g):\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6}
\end{array}\right) \quad\left(\begin{array}{c}
\alpha_{1}^{\prime} \\
\alpha_{2}^{\prime} \\
\alpha_{3}^{\prime} \\
\alpha_{4}^{\prime} \\
\alpha_{5}^{\prime} \\
\alpha_{6}^{\prime}
\end{array}\right)=M^{(r e g)}(g)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6}
\end{array}\right)
$$

(or, equivalently, $\left.\left(\mathbf{e}_{1}^{\prime}, \cdots, \mathbf{e}_{6}^{\prime}\right)=\left(\mathbf{e}_{1}, \cdots, \mathbf{e}_{6}\right) M^{(r e g)}(g)\right)$ as follows:

$$
\left.\begin{array}{ll}
M^{(r e g)}(e)=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), & M^{(r e g)}\left(c_{3}\right)=\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right), \\
M^{(r e g)}\left(c_{3}^{-1}\right)=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right),
\end{array}\right), \quad M^{(r e g)}\left(\sigma_{1}\right)=\left(\begin{array}{llllll}
0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right),
$$

- memo -

Since \mathbf{v} can be written as

$$
\mathbf{v}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{6}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6}
\end{array}\right)
$$

which transforms under the action of $\rho^{(r e g)}(g)$ to

$$
\rho^{(r e g)}(g) \mathbf{v}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{6}\right) M^{(r e g)}(g)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6}
\end{array}\right)
$$

one can regard this transformation as the transformation of α_{i} 's, $\left(\alpha_{1}, \cdots, \alpha_{6}\right)^{T} \rightarrow$ $M^{(r e g)}(g)\left(\alpha_{1}, \cdots, \alpha_{6}\right)^{T}$. On definition of regular representation -
We first start with the left action of G on a element $g \in G, \hat{h}(g)=h g(h \in G)$. Then from this, we have

$$
\hat{h} \sum_{g \in G} \alpha(g) g=\sum_{g \in G} \alpha(g) h g=\sum_{g \in G} \alpha\left(h^{-1} g\right) g .
$$

Then we also have

$$
\begin{aligned}
\hat{h}_{1} \hat{h}_{2} \sum_{g \in G} \alpha(g) g & =\hat{h}_{1} \sum_{g \in G} \alpha(g) h_{2} g=\sum_{g \in G} \alpha(g) h_{1} h_{2} g=\sum_{g \in G} \alpha(g)\left(h_{1} h_{2}\right) g=\widehat{\left(h_{1} h_{2}\right)} \sum_{g \in G} \alpha(g) g, \\
& =\sum_{g \in G} \alpha\left(\left(h_{1} h_{2}\right)^{-1} g\right) g .
\end{aligned}
$$

Thus, the action of $h \in G$ onto the function $\alpha(g)$ is given by $\hat{h} \alpha(g)=\alpha\left(h^{-1} g\right)$. In the above (as well as the lecture), we have used this definition of the regular representation.
2. Let us in general consider a finite group G and its representations $\rho^{(\alpha)}$ and $\rho^{(\beta)}$. We assume that these representations are n_{α}-dimensional and n_{β}-dimensional, respectively. We denote the matrix representation of the element $g \in G$ corresponding to these two representations by $M^{(\alpha)}(g)$ and $M^{(\beta)}(g)$, respectively. Then we consider the tensor product representation for the representations $\rho^{(\alpha)}$ and $\rho^{(\beta)}$. The matrix representation of $g \in G$ denoted by $M^{(\alpha \otimes \beta)}(g)$ is now a $\left(n_{\alpha} n_{\beta}\right) \times\left(n_{\alpha} n_{\beta}\right)$ matrix whose $\left(n_{\beta}(i-1)+a, n_{\beta}(j-1)+b\right)$ component is given by $M_{i j}^{(\alpha)}(g) M_{a b}^{(\beta)}(g)$.
Now we recall that for ρ of the dihedral group D_{3}, we have

$$
\begin{array}{lll}
M(e)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & M\left(c_{3}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), & M\left(c_{3}^{-1}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \\
M\left(\sigma_{1}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), & M\left(\sigma_{2}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), & M\left(\sigma_{3}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{array}
$$

Therefore, for the tensor product representation of two ρ 's we obtain

$$
\begin{array}{rl}
M^{(\rho \otimes \rho)}(e)= & \left(\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \\
M^{(\rho \otimes \rho)}\left(c_{3}\right)=\left(\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right), \\
M^{(\rho \otimes \rho)}\left(c_{3}^{-1}\right)=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array}\right), \\
1 & 0
\end{array} 0
$$

$$
\begin{aligned}
M^{(\rho \otimes \rho)}\left(\sigma_{2}\right) & =\left(\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
M^{(\rho \otimes \rho \rho)}\left(\sigma_{3}\right) & =\left(\begin{array}{lllllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

(2)

1. For $g_{1}, g_{2} \in G$, we confirm $\bar{\rho}\left(g_{1}\right) \bar{\rho}\left(g_{2}\right)=\bar{\rho}\left(g_{1} g_{2}\right)$:

$$
\begin{aligned}
\bar{\rho}\left(g_{1}\right) \bar{\rho}\left(g_{2}\right) & =\left(\rho\left(g_{1}^{-1}\right)\right)^{T}\left(\rho\left(g_{2}^{-1}\right)\right)^{T} \\
& =\left(\rho\left(g_{2}^{-1}\right) \rho\left(g_{1}^{-1}\right)\right)^{T} \\
& =\left(\rho\left(g_{2}^{-1} g_{1}^{-1}\right)\right)^{T} \\
& =\left(\rho\left(\left(g_{1} g_{2}\right)^{-1}\right)\right)^{T} \\
& =\bar{\rho}\left(g_{1} g_{2}\right) .
\end{aligned}
$$

2. For $g_{1}, g_{2} \in G$, we confirm $\rho^{*}\left(g_{1}\right) \rho^{*}\left(g_{2}\right)=\rho^{*}\left(g_{1} g_{2}\right)$:

$$
\rho^{*}\left(g_{1}\right) \rho^{*}\left(g_{2}\right)=\left(\rho\left(g_{1}\right)\right)^{*}\left(\rho\left(g_{2}\right)\right)^{*}=\left(\rho\left(g_{1}\right) \rho\left(g_{2}\right)\right)^{*}=\left(\rho\left(g_{1} g_{2}\right)\right)^{*}=\rho^{*}\left(g_{1} g_{2}\right) .
$$

2 Symmetry in Quantum Mechanics

1. Since

$$
H|\psi\rangle=E|\psi\rangle, \quad H|\phi\rangle=E^{\prime}|\phi\rangle,
$$

we have

$$
\langle\psi| H|\phi\rangle=E\langle\psi \mid \phi\rangle=E^{\prime}\langle\psi \mid \phi\rangle .
$$

Then we obtain

$$
\left(E-E^{\prime}\right)\langle\psi \mid \phi\rangle=0,
$$

which means $\langle\psi \mid \phi\rangle=0$ for $E \neq E^{\prime}$.
2. The existence of $i d$ is OK from the assumption (note that obviously $i d H=H i d$). For A, B in this set, we have

$$
A B H=A H B=H A B .
$$

Since A in this set is invertible, there exists A^{-1} such that $A A^{-1}=A^{-1} A=E$. By multiplying A^{-1} both from the left and right of $A H=H A$, we have

$$
(L H S)=A^{-1} A H A^{-1}=H A^{-1}, \quad(R H S)=A^{-1} H A A^{-1}=A^{-1} H .
$$

Thus we have $H A^{-1}=A^{-1} H$. The associativity of the elements in this set is obviously satisfied.
3. Since A commutes with H, we have

$$
H A|\psi\rangle=A H|\psi\rangle=E A|\psi\rangle .
$$

4. We first define a matrix M as (for representations of G labeled by α and β and an element $A \in G$)

$$
P=\sum_{A \in G} M^{(\alpha)}\left(A^{-1}\right) Q M^{(\beta)}(A) .
$$

Here Q is an arbitrary $n_{\alpha} \times n_{\beta}$ matrix which we will take to a specific matrix later. Then we have (for $B \in G$)

$$
\begin{aligned}
M^{(\alpha)}(B) P & =\sum_{A \in G} M^{(\alpha)}(B) M^{(\alpha)}\left(A^{-1}\right) Q M^{(\beta)}(A) \\
& =\sum_{A \in G} M^{(\alpha)}\left(B A^{-1}\right) Q M^{(\beta)}(A) \\
& =\sum_{A^{\prime} \in G} M^{(\alpha)}\left(A^{\prime-1}\right) Q M^{(\beta)}\left(A^{\prime} B\right) \\
& =\sum_{A^{\prime} \in G} M^{(\alpha)}\left(A^{\prime-1}\right) Q M^{(\beta)}\left(A^{\prime}\right) M^{(\beta)}(B) \\
& =P M^{(\beta)}(B) .
\end{aligned}
$$

In the middle, we have defined $A^{\prime-1}=B A^{-1}$ and replaced $\sum_{A \in G}$ by $\sum_{A^{\prime} \in G}$ since $\left\{A^{\prime}=A B^{-1} \mid A \in G\right\}=G$.
Thus from the Schur's lemma, if $\alpha \neq \beta$ we have $P=0$. By taking N to be $Q_{a b}=1$ and otherwise 0 (that is, (a, b)-component is 1 while the others are all zero), we can write $P=0$ as

$$
0=\sum_{A \in G} M_{c a}^{(\alpha)}\left(A^{-1}\right) M_{b d}^{(\beta)}(A)=\sum_{A \in G} M_{a c}^{(\alpha)}(A)^{*} M_{b d}^{(\beta)}(A) .
$$

Here we have used the fact that $M^{(\alpha)}$ is unitary:

$$
M_{c a}^{(\alpha)}\left(A^{-1}\right)=\left(M^{(\alpha)}(A)^{-1}\right)_{c a}=\left(M^{(\alpha)}(A)^{\dagger}\right)_{c a}=\left(M^{(\alpha)}(A)^{*}\right)_{a c}=M_{a c}^{(\alpha)}(A)^{*} .
$$

For $\alpha=\beta$, from the Schur's lemma, we have $P=C 1_{n_{\alpha}}$ where C is a constant and $1_{n_{\alpha}}$ is $n_{\alpha} \times n_{\alpha}$ unit matrix. Then, by taking Q as above, we obtain

$$
C \delta_{c d}=\sum_{A \in G} M_{c a}^{(\alpha)}\left(A^{-1}\right) M_{b d}^{(\alpha)}(A) .
$$

By taking the trace with respect to (c, d), we obtain

$$
\begin{aligned}
C n_{\alpha} & =\sum_{A \in G} M_{c a}^{(\alpha)}\left(A^{-1}\right) M_{b c}^{(\alpha)}(A) \\
& =\sum_{A \in G} M_{b a}^{(\alpha)}\left(A A^{-1}\right) \\
& =\sum_{A \in G} M_{b a}^{(\alpha)}(i d) \\
& =|G| \delta_{a b} .
\end{aligned}
$$

Here we have used the fact that $M_{b a}^{(\alpha)}(i d)=\delta_{a b}$. From this, we have $C=|G| \delta_{a b} / n_{\alpha}$. Therefore we have obtained

$$
\frac{|G|}{n_{\alpha}} \delta_{a b} \delta_{c d}=\sum_{A \in G} M_{c a}^{(\alpha)}\left(A^{-1}\right) M_{b c}^{(\alpha)}(A)=\sum_{A \in G}\left(M_{a c}^{(\alpha)}(A)\right)^{*} M_{b d}^{(\alpha)}(A) .
$$

- memo-

Schur's lemma
Let us consider two complex irreducible representations $\rho^{(\alpha)}: G \rightarrow G L\left(n_{\alpha}, \mathbb{C}\right)$ and $\rho^{(\beta)}: G \rightarrow G L\left(n_{\beta}, \mathbb{C}\right)$ of a finite group G. We denote their matrix representation by $M^{(\alpha)}$ and $M^{(\beta)}$, respectively. We denote a matrix expression of an equivariant from $\mathbb{C}^{n_{\alpha}}$ to $\mathbb{C}^{n_{\beta}}$ by N which satisfies $N M^{(\alpha)}(g)=M^{(\beta)}(g) N$ for $g \in G$. Then
(a) if N is not isorporphic, then $N=0$.
(b) if $n_{\alpha}=n_{\beta}$, then $N=\lambda 1_{n_{\alpha}}$ where $\lambda \in \mathbb{C}$.

Thus for $\alpha \neq \beta$, we have $N=0$, while for $\alpha=\beta$ we have $N=\lambda 1_{n_{\alpha}}$.
5. (i) Proof by using the orthogonality relation of the representation

$$
\begin{aligned}
\left\langle\psi_{a}^{(\alpha)}\right| O\left|\psi_{b}^{(\beta)}\right\rangle & =\frac{1}{|G|} \sum_{A \in G}\left\langle\psi_{a}^{(\alpha)}\right| A^{-1} A O\left|\psi_{b}^{(\beta)}\right\rangle \\
& =\frac{1}{|G|} \sum_{A \in G}\left\langle\psi_{a}^{(\alpha)}\right| A^{-1} O A\left|\psi_{b}^{(\beta)}\right\rangle \\
& =\frac{1}{|G|} \sum_{A \in G} \sum_{\gamma} \sum_{c}\left\langle\psi_{a}^{(\alpha)}\right| A^{-1}\left|\psi_{c}^{(\gamma)}\right\rangle\left\langle\psi_{c}^{(\gamma)}\right| O A\left|\psi_{b}^{(\beta)}\right\rangle \\
& =\frac{1}{|G|} \sum_{A \in G} \sum_{\gamma} \sum_{c, d, e}\left\langle\psi_{a}^{(\alpha)} \mid \psi_{d}^{(\gamma)}\right\rangle M_{d c}^{(\gamma)}\left(A^{-1}\right)\left\langle\psi_{c}^{(\gamma)}\right| O\left|\psi_{e}^{(\beta)}\right\rangle M_{e b}^{(\beta)}(A)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{|G|} \sum_{A \in G} \sum_{\gamma} \sum_{c, d, e} \delta_{a d} \delta_{\alpha \gamma} M_{d c}^{(\gamma)}\left(A^{-1}\right)\left\langle\psi_{c}^{(\gamma)}\right| O\left|\psi_{e}^{(\beta)}\right\rangle M_{e b}^{(\beta)}(A) \\
& =\frac{1}{|G|} \sum_{A \in G} \sum_{c, e} M_{a c}^{(\alpha)}\left(A^{-1}\right)\left\langle\psi_{c}^{(\alpha)}\right| O\left|\psi_{e}^{(\beta)}\right\rangle M_{e b}^{(\beta)}(A) \\
& =\frac{1}{|G|} \sum_{A \in G} \sum_{c, e} M_{c a}^{(\alpha)}(A)^{*}\left\langle\psi_{c}^{(\alpha)}\right| O\left|\psi_{e}^{(\beta)}\right\rangle M_{e b}^{(\beta)}(A) \\
& =\frac{1}{|G|} \sum_{A \in G} \sum_{c=1}^{n_{\alpha}} \sum_{d=1}^{n_{\beta}} M_{c a}^{(\alpha)}(A)^{*} M_{d b}^{(\beta)}(A)\left\langle\psi_{c}^{(\alpha)}\right| O\left|\psi_{d}^{(\beta)}\right\rangle \\
& =\frac{1}{n_{\alpha}} \delta_{\alpha \beta} \sum_{c=1}^{n_{\alpha}} \sum_{d=1}^{n_{\beta}} \delta_{a b} \delta_{c d}\left\langle\psi_{c}^{(\alpha)}\right| O\left|\psi_{d}^{(\beta)}\right\rangle \\
& =\frac{1}{n_{\alpha}} \delta_{\alpha \beta} \delta_{a b} \sum_{c=1}^{n_{\alpha}}\left\langle\psi_{c}^{(\alpha)}\right| O\left|\psi_{c}^{(\alpha)}\right\rangle .
\end{aligned}
$$

This is what we want to prove with $C^{(\alpha)}=\left(1 / n_{\alpha}\right) \sum_{c}\left\langle\psi_{c}^{(\alpha)}\right| O\left|\psi_{c}^{(\alpha)}\right\rangle$. Here we have used the orthogonality relation of the irreducible representationa

$$
\sum_{A \in G}\left(M_{a c}^{(\alpha)}(A)\right)^{*} M_{b d}^{(\beta)}(A)=\frac{|G|}{n_{\alpha}} \delta_{\alpha \beta} \delta_{a b} \delta_{c d} .
$$

(ii) Proof by directly using the Schur's lemma

We notice that

$$
\begin{aligned}
\left\langle\psi_{a}^{(\alpha)}\right| A\left|\psi_{b}^{(\beta)}\right\rangle & =\left\langle\psi_{a}^{(\alpha)}\right| \sum_{c=1}^{n_{\beta}}\left|\psi_{c}^{(\beta)}\right\rangle M_{c b}^{(\beta)}(A) \\
& =\sum_{c=1}^{n_{\beta}} \delta_{a c} \delta_{\alpha \beta} M_{c b}^{(\beta)}(A) \\
& =\delta_{\alpha \beta} M_{a b}^{(\beta)}(A) .
\end{aligned}
$$

Since $[O, A]=0$ for $A \in G$, we have by inserting the identity operator $i d=$ $\sum_{\alpha} \sum_{a}\left|\psi_{a}^{(\alpha)}\right\rangle\left\langle\psi_{a}^{(\alpha)}\right|$

$$
\begin{aligned}
0 & =\left\langle\psi_{a}^{(\alpha)}\right|[O, A]\left|\psi_{b}^{(\beta)}\right\rangle \\
& =\left\langle\psi_{a}^{(\alpha)}\right| O A\left|\psi_{b}^{(\beta)}\right\rangle-\left\langle\psi_{a}^{(\alpha)}\right| A O\left|\psi_{b}^{(\beta)}\right\rangle \\
& =\left\langle\psi_{a}^{(\alpha)}\right| O A\left|\psi_{b}^{(\beta)}\right\rangle-\left\langle\psi_{a}^{(\alpha)}\right| A O\left|\psi_{b}^{(\beta)}\right\rangle \\
& =\sum_{\gamma} \sum_{c}\left(\left\langle\psi_{a}^{(\alpha)}\right| O\left|\psi_{c}^{(\gamma)}\right\rangle\left\langle\psi_{c}^{(\gamma)}\right| A\left|\psi_{b}^{(\beta)}\right\rangle-\left\langle\psi_{a}^{(\alpha)}\right| A\left|\psi_{c}^{(\gamma)}\right\rangle\left\langle\psi_{c}^{(\gamma)}\right| O\left|\psi_{b}^{(\beta)}\right\rangle\right) \\
& =\sum_{c}\left(\left\langle\psi_{a}^{(\alpha)}\right| O\left|\psi_{c}^{(\beta)}\right\rangle M_{c b}^{(\beta)}(A)-M_{a c}^{(\alpha)}(A)\left\langle\psi_{c}^{(\alpha)}\right| O\left|\psi_{b}^{(\beta)}\right\rangle\right)
\end{aligned}
$$

Because of the Schur's lemma, we first notice that $\left\langle\psi_{a}^{(\alpha)}\right| O\left|\psi_{c}^{(\beta)}\right\rangle$ is zero unless $\alpha=\beta$. Moreover, from this lemma, for $\alpha=\beta$ we also have $\left\langle\psi_{a}^{(\alpha)}\right| O\left|\psi_{c}^{(\alpha)}\right\rangle$ is proportional to $\delta_{a c}$. Thus we finally have

$$
\left\langle\psi_{a}^{(\alpha)}\right| O\left|\psi_{b}^{(\beta)}\right\rangle=C^{(\alpha)} \delta_{a b} \delta_{\alpha \beta},
$$

where $C^{(\alpha)}$ is a constant independent of a. One can determine $C^{(\alpha)}$ by setting $\alpha=\beta$ and taking the trace with respect to (a, b). Then we reproduce $C^{(\alpha)}$ obtained by using the method (i).

