Solution Set for Exercise Session No. 5

Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1) 18th December, 2014, at Room 235A

Lecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr)
Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 Some Basics on Manifolds

To see that S^{2} and $\mathbb{R} P^{2}$ are Hausdorff spaces, please refer to some topology books. (1)

1. To cover S^{2}, we introduce open sets $\left\{O_{x}^{ \pm}, O_{y}^{ \pm}, O_{z}^{ \pm}\right\}$where $O_{x}^{ \pm}$etc. are defined by

$$
\begin{array}{ll}
O_{x}^{+}=\left\{(x, y, z) \in S^{2} \mid x>0\right\}, & O_{x}^{-}=\left\{(x, y, z) \in S^{2} \mid x<0\right\}, \\
O_{y}^{+}=\left\{(x, y, z) \in S^{2} \mid y>0\right\}, & O_{y}^{-}=\left\{(x, y, z) \in S^{2} \mid y<0\right\}, \\
O_{z}^{+}=\left\{(x, y, z) \in S^{2} \mid z>0\right\}, & O_{z}^{-}=\left\{(x, y, z) \in S^{2} \mid z<0\right\} .
\end{array}
$$

One can construct maps from $O_{x}^{ \pm}$etc. to a unit open disk in $\mathbb{R}^{2}, D^{2}=\{(a, b) \in$ $\left.\mathbb{R}^{2} \mid a^{2}+b^{2}<1\right\}$ as

$$
\begin{aligned}
& \varphi_{x}^{+}(x, y, z)=\varphi_{x}^{-}(x, y, z)=(y, z), \\
& \varphi_{y}^{+}(x, y, z)=\varphi_{y}^{-}(x, y, z)=(x, z), \\
& \varphi_{z}^{+}(x, y, z)=\varphi_{z}^{-}(x, y, z)=(x, y) .
\end{aligned}
$$

We check that this atlas is indeed an atlas of class C^{∞} (an atlas where all the transition functions are C^{∞} and bijective and their inverses are C^{∞}). It is obvious that the union of the open sets satisfies $O_{x}^{+} \cup O_{x}^{-} \cup O_{y}^{+} \cup O_{y}^{-} \cup O_{z}^{+} \cup O_{z}^{-}=S^{2}$. Here we note that $\varphi_{x}^{ \pm}: O_{x}^{ \pm} \rightarrow D^{2}, \varphi_{y}^{ \pm}: O_{y}^{ \pm} \rightarrow D^{2}$ and $\varphi_{z}^{ \pm}: O_{z}^{ \pm} \rightarrow D^{2}$. Then the inverses of these maps are

$$
\begin{aligned}
& \left(\varphi_{x}^{ \pm}\right)^{-1}(a, b)=\left(\pm\left(1-a^{2}-b^{2}\right)^{1 / 2}, a, b\right), \\
& \left(\varphi_{y}^{ \pm}\right)^{-1}(a, b)=\left(a, \pm\left(1-a^{2}-b^{2}\right)^{1 / 2}, b\right), \\
& \left(\varphi_{z}^{ \pm}\right)^{-1}(a, b)=\left(a, b, \pm\left(1-a^{2}-b^{2}\right)^{1 / 2}\right) .
\end{aligned}
$$

Obviously these $\varphi_{x}^{ \pm}$etc. are homeomorphism (bijective, continuous, and their inverses are also continuous).
Let us now consider the intersection of O_{x}^{+}and $O_{y}^{+}, O_{x}^{+} \cap O_{y}^{+}=\left\{(x, y, z) \in S^{2} \mid x>\right.$ $0, y>0\}$, which is not empty. Then the transition function from $\varphi_{x}^{+}\left(O_{x}^{+} \cap O_{y}^{+}\right)=$ $\left\{(c, d) \in D^{2} \mid d>0\right\}$ to $\varphi_{y}^{+}\left(O_{x}^{+} \cap O_{y}^{+}\right)=\left\{(a, b) \in D^{2} \mid a>0\right\}$ is given by (for $\left.(a, b) \in \varphi_{x}^{+}\left(O_{x}^{+} \cap O_{y}^{+}\right)\right)$

$$
\varphi_{y}^{+} \circ\left(\varphi_{x}^{+}\right)^{-1}(a, b)=\varphi_{y}^{+}\left(\left(1-a^{2}-b^{2}\right)^{1 / 2}, a, b\right)
$$

$$
=\left(\left(1-a^{2}-b^{2}\right)^{1 / 2}, b\right)
$$

This is obviously infinite time differentiable and bijective. The inverse of transition function is (for $(c, d) \in \varphi_{y}^{+}\left(O_{x}^{+} \cap O_{y}^{+}\right)$)

$$
\begin{aligned}
\left(\varphi_{y}^{+} \circ\left(\varphi_{x}^{+}\right)^{-1}\right)^{-1}(c, d) & =\varphi_{x}^{+} \circ\left(\varphi_{y}^{+}\right)^{-1}(c, d) \\
& =\varphi_{x}^{+}\left(c,\left(1-c^{2}-d^{2}\right)^{1 / 2}, d\right) \\
& =\left(\left(1-c^{2}-d^{2}\right)^{1 / 2}, d\right)
\end{aligned}
$$

This map is also infinite time differentiable. Therefore this transition function is C^{∞} and bijective and its inverse is also C^{∞}. We can show the same statement for the other overlaps of the open sets in a similar way. Therefore S^{2} is a two-dimensional differentiable manifold of class C^{∞}.
2. We can easily see that $U^{+} \cup U^{-}=S^{2}$. Let us next construct $f^{ \pm}$explicitly. The map f^{+}is a stereographic projection from the north pole $(0,0,1)$ to (x, y)-plane (that is, $f^{+}: U^{+} \rightarrow \mathbb{R}^{2}$). Thus, under this map, we can identify where $(x, y, z) \in$ $S^{2} \backslash\{(0,0,1)\}$ is mapped to as follows: by solving

$$
t((x, y, z)-(0,0,1))+(0,0,1)=(X, Y, 0)
$$

with respect to t, we obtain $t=1 /(1-z)$. Thus f^{+}is

$$
f^{+}(x, y, z)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right) .
$$

Similarly we can construct $f^{-}: U^{-} \rightarrow \mathbb{R}^{2}$ as (we have only to replace $(0,0,1)$ by $(0,0,-1)$ in the above computation)

$$
f^{-}(x, y, z)=\left(\frac{x}{1+z}, \frac{y}{1+z}\right)
$$

These $f^{ \pm}$are obviously bijective and continuous.
Now we calculate the inverse of f^{+}. Since $X=x /(1-z)$ and $Y=y /(1-z)$, we have

$$
X^{2}+Y^{2}=\frac{x^{2}+y^{2}}{(1-z)^{2}}=\frac{1-z^{2}}{(1-z)^{2}}=\frac{1+z}{1-z}
$$

Here we have used $x^{2}+y^{2}+z^{2}=1$. Then by solving this, we obtain z as

$$
z=\frac{X^{2}+Y^{2}-1}{X^{2}+Y^{2}+1}
$$

Then x and y are

$$
x=\frac{2 X}{X^{2}+Y^{2}+1}, \quad y=\frac{2 Y}{X^{2}+Y^{2}+1} .
$$

To summarize, $\left(f^{+}\right)^{-1}: \mathbb{R}^{2} \rightarrow U^{+}$is (for $\left.(X, Y) \in \mathbb{R}^{2}\right)$

$$
\left(f^{+}\right)^{-1}(X, Y)=\left(\frac{2 X}{X^{2}+Y^{2}+1}, \frac{2 Y}{X^{2}+Y^{2}+1}, \frac{X^{2}+Y^{2}-1}{X^{2}+Y^{2}+1}\right) .
$$

In a similar way, we can get $\left(f^{-}\right)^{-1}: \mathbb{R}^{2} \rightarrow U^{-}$as

$$
\left(f^{-}\right)^{-1}(X, Y)=\left(\frac{2 X}{X^{2}+Y^{2}+1}, \frac{2 Y}{X^{2}+Y^{2}+1}, \frac{1-X^{2}-Y^{2}}{X^{2}+Y^{2}+1}\right) .
$$

These inverse maps are obviously continuous. Thus $f^{ \pm}$are homeomorphism (bijective, continuous, and their inverse is also continuous).
Now we consider the transition function and its differentiability. We consider the intersection $U^{+} \cap U^{-}=S^{2} \backslash\{(0,0, \pm 1)\}(\neq \emptyset)$. Then the transition function is $f^{+} \circ\left(f^{-}\right)^{-1}: f^{-}\left(U^{+} \cap U^{-}\right)=\mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow f^{+}\left(U^{+} \cap U^{-}\right)=\mathbb{R}^{2} \backslash\{(0,0)\}$. This map is explicitly written as (for $\left.(X, Y) \in f^{-}\left(U^{+} \cap U^{-}\right)\right)$

$$
\begin{aligned}
f^{+} \circ\left(f^{-}\right)^{-1}(X, Y) & =f^{+}\left(\frac{2 X}{X^{2}+Y^{2}+1}, \frac{2 Y}{X^{2}+Y^{2}+1}, \frac{1-X^{2}-Y^{2}}{X^{2}+Y^{2}+1}\right) \\
& =\left(\frac{X}{X^{2}+Y^{2}}, \frac{Y}{X^{2}+Y^{2}}\right)
\end{aligned}
$$

and its inverse is (for $(X, Y) \in f^{+}\left(U^{+} \cap U^{-}\right)$)

$$
\begin{aligned}
\left(f^{+} \circ\left(f^{-}\right)^{-1}\right)^{-1}(X, Y) & =f^{-} \circ\left(f^{+}\right)^{-1}(X, Y) \\
& =f^{-}\left(\frac{2 X}{X^{2}+Y^{2}+1}, \frac{2 Y}{X^{2}+Y^{2}+1}, \frac{X^{2}+Y^{2}-1}{X^{2}+Y^{2}+1}\right) \\
& =\left(\frac{X}{X^{2}+Y^{2}}, \frac{Y}{X^{2}+Y^{2}}\right) .
\end{aligned}
$$

Obviously from these expressions, this transition function is bijective and infinite time differentiable, and its inverse is also infinite time differentiable. Thus this transition function is C^{∞} and bijective and its inverse is also C^{∞}. Therefore, we have confirmed that S^{2} is a two-dimensional differentiable manifold.

1. We first notice that $U_{x} \cup U_{y} \cup U_{z}=\mathbb{R} P^{2}$. It is obvious that $\varphi_{x}, \varphi_{y}, \varphi_{z}$ are continuous and bijective maps to \mathbb{R}^{2}. We also note that the inverses of $\varphi_{x}, \varphi_{y}, \varphi_{z}$ are

$$
\begin{array}{lc}
\left(\varphi_{x}\right)^{-1}(Y, Z)=[1: Y: Z], & \text { for }(Y, Z) \in \mathbb{R}^{2}, \\
\left(\varphi_{y}\right)^{-1}(X, Z)=[X: 1: Z], & \text { for }(X, Z) \in \mathbb{R}^{2}, \\
\left(\varphi_{z}\right)^{-1}(X, Y)=[X: Y: 1], & \text { for }(X, Y) \in \mathbb{R}^{2} .
\end{array}
$$

which are all continuous. Thus $\varphi_{x}, \varphi_{y}, \varphi_{z}$ are all homeomorphism.

Now we consider the intersection $U_{x} \cap U_{y}=\left\{[x: y: z] \in \mathbb{R} P^{2} \mid x \neq 0, y \neq 0\right\} \neq \emptyset$. The transition function $\varphi_{y} \circ \varphi_{x}^{-1}: \varphi_{x}\left(U_{x} \cap U_{y}\right)=\left\{(X, Z) \in \mathbb{R}^{2} \mid X \neq 0\right\} \rightarrow \varphi_{y}\left(U_{x} \cap\right.$ $\left.U_{y}\right)=\left\{(Y, Z) \in \mathbb{R}^{2} \mid Y \neq 0\right\}$ is given by (for $(Y, Z) \in \varphi_{x}\left(U_{x} \cap U_{y}\right)$ and $Y \neq 0$)

$$
\varphi_{y} \circ \varphi_{x}^{-1}(Y, Z)=\varphi_{y}([1: Y: Z])=\left(\frac{1}{Y}, \frac{Z}{Y}\right)
$$

and its inverse map is (for $(X, Z) \in \varphi_{y}\left(U_{x} \cap U_{y}\right)$ and $X \neq 0$)

$$
\begin{aligned}
\left(\varphi_{y} \circ \varphi_{x}^{-1}\right)^{-1}(X, Z) & =\varphi_{x} \circ \varphi_{y}^{-1}(X, Z) \\
& =\varphi_{x}([X: 1: Z]) \\
& =\left(\frac{1}{X}, \frac{Z}{X}\right)
\end{aligned}
$$

This transition function is obviously bijective and infinite time differentiable, and its inverse is also infinite time differerentiable. We can check these properties of the other transition functions in a similar way. Thus $\mathbb{R} P^{2}$ is a two-dimensional differentiable manifold of class C^{∞}.
2. We denote the equivalence class for $(x, y, z) \in S^{2}$ under the identification of the antipodal point as $[x, y, z] \in S^{2} / \sim$. Let us consider a map $f: \mathbb{R}^{3} \backslash\{(0,0,0)\} \rightarrow S^{2}$ defined by

$$
f(x, y, z)=\left(\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) .
$$

From this, one can construct a map from $\mathbb{R} P^{2}$ to S^{2} / \sim as

$$
\bar{f}:[x: y: z] \quad \mapsto \quad\left[\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right],
$$

for $[x: y: z] \in \mathbb{R} P^{2}$. Let us now consider a map $g: S^{2} \rightarrow \mathbb{R}^{3} \backslash\{(0,0,0)\}$ defined by $g(x, y, z)=(x, y, z)$. This induces a map $\bar{g}: S^{2} / \sim \rightarrow \mathbb{R} P^{2}$ as $\bar{g}([x, y, z])=[x: y: z]$. One can confirm that \bar{g} is the inverse of \bar{f} as follows: For $(x, y, z) \in S^{2}$, we have

$$
(\bar{f} \circ \bar{g})([x, y, z])=\bar{f}([x: y: z])=\left[\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right]=[x, y, z] .
$$

Here we have used $x^{2}+y^{2}+z^{2}=1$ since $(x, y, z) \in S^{2}$. We can also show, for $(x, y, z) \in \mathbb{R}^{3} \backslash\{(0,0,0)\}$,

$$
\begin{aligned}
(\bar{g} \circ \bar{f})([x: y: z]) & =\bar{g}\left(\left[\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right]\right) \\
& =\left[\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}: \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}: \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right] \\
& =[x: y: z] .
\end{aligned}
$$

Thus we have confirmed that \bar{g} is the inverse of \bar{f}. It is obvious that \bar{f} is bijective and continuous, and its inverse \bar{g} is continuous. Thus we have confirmed that S^{2} / \sim is homeomorphic (bijective, continuous, continuous inverse) to $\mathbb{R} P^{2}$).

2 Tangent Vector

We note that $p \in U^{+}$. Let us recall that, by using the stereographic projection from the north pole, we have introduced a local coordinate on the open set $S^{2} \backslash\{(0,0,1)\}$ as

$$
(X, Y)=f^{+}(x, y, z)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right) .
$$

Thus we have

$$
\left(f^{+} \circ c\right)(t)=\left(\frac{\sin \phi_{0} \cos t}{1-\cos \phi_{0}}, \frac{\sin \phi_{0} \sin t}{1-\cos \phi_{0}}\right) .
$$

By using this, the tangent vector at p is given by

$$
\begin{aligned}
V_{p} & =\frac{d}{d t}\left(\frac{\sin \phi_{0} \cos t}{1-\cos \phi_{0}}\right)_{t=0}\left(\partial_{X}\right)_{p}+\frac{d}{d t}\left(\frac{\sin \phi_{0} \sin t}{1-\cos \phi_{0}}\right)_{t=0}\left(\partial_{Y}\right)_{p} \\
& =\frac{\sin \phi_{0}}{1-\cos \phi_{0}}\left(\partial_{Y}\right)_{p} .
\end{aligned}
$$

