Solution Set for Exercise Session No. 6

Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1)
8th January, 2015, at Room 235A
Lecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr)
Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 Differential

(1)

1. Let us take $v \in T_{p} M_{1}$ and C^{∞} function h defined in the neighborhood of $(g \circ f)(p)$. Then we have

$$
d(g \circ f)_{p}(v) h=v(h \circ g \circ f)=d f_{p}(v)(h \circ g)=d g_{f(p)}\left(d f_{p}(v)\right) h=d g_{f(p)} \circ d f_{p}(v) h .
$$

2. Let us take $v \in T_{p} M_{1}$ and C^{∞} function h defined in the neighborhood of $i d_{M_{1}}(p)=$ p. Then we have

$$
d\left(i d_{M_{1}}\right)_{p}(v) h=v\left(h \circ i d_{M_{1}}\right)=v(h)=i d_{T_{p} M_{1}}(v) h .
$$

Here we have used $i d_{T_{p} M_{1}}(v)=v$.
3. By using the result in the first and second problems we obtain

$$
\begin{aligned}
& d\left(f^{-1}\right)_{f(p)} \circ d f_{p}=d\left(f^{-1} \circ f\right)_{p}=d\left(i d_{M_{1}}\right)_{p}=i d_{T_{p} M_{1}} \\
& d f_{p} \circ d\left(f^{-1}\right)_{f(p)}=d\left(f \circ f^{-1}\right)_{f(p)}=d\left(i d_{M_{2}}\right)_{f(p)}=i d_{T_{f(p)} M_{2}}
\end{aligned}
$$

(2) Let us recall the coordinate for $\mathbb{R} P^{2}$ introduced in Problem Set No.5. The atlas $\left\{\left(U_{x}, \phi_{x}\right),\left(U_{y}, \phi_{y}\right),\left(U_{z}, \phi_{z}\right)\right\}$ is defined with the open sets defined by
$U_{x}=\left\{[x: y: z] \in \mathbb{R} P^{2} \mid x \neq 0\right\}, U_{y}=\left\{[x: y: z] \in \mathbb{R} P^{2} \mid y \neq 0\right\}, U_{z}=\left\{[x: y: z] \in \mathbb{R} P^{2} \mid z \neq 0\right\}$, and the maps from these open sets to \mathbb{R}^{2} defined by (for later convenience we denoted the coordinates as $\phi_{x}, \phi_{y}, \phi_{z}$ (while in Problem Set No. 5 we denoted as $\varphi_{x}, \varphi_{y}, \varphi_{z}$))
$\phi_{x}([x: y: z])=\left(\frac{y}{x}, \frac{z}{x}\right), \quad \phi_{y}([x: y: z])=\left(\frac{x}{y}, \frac{z}{y}\right), \quad \phi_{z}([x: y: z])=\left(\frac{x}{z}, \frac{y}{z}\right)$.
We also note that the inverses of $\phi_{x}, \phi_{y}, \phi_{z}$ are

$$
\begin{array}{rlr}
\left(\phi_{x}\right)^{-1}(Y, Z) & =[1: Y: Z], & \text { for }(Y, Z) \in \mathbb{R}^{2}, \\
\left(\phi_{y}\right)^{-1}(X, Z) & =[X: 1: Z], & \text { for }(X, Z) \in \mathbb{R}^{2}, \\
\left(\phi_{z}\right)^{-1}(X, Y) & =[X: Y: 1], & \text { for }(X, Y) \in \mathbb{R}^{2} .
\end{array}
$$

1. Let us first consider $(Y, Z) \in \phi_{x}\left(U_{x}\right)$. Then we have

$$
\psi \circ \phi_{x}^{-1}(Y, Z)=\phi([1: Y: Z])=\frac{Z^{2}}{1+Y^{2}+Z^{2}},
$$

and thus we have

$$
\begin{aligned}
& \frac{\partial\left(\phi \circ \phi_{x}^{-1}\right)}{\partial Y}=-\frac{2 Y Z^{2}}{\left(1+Y^{2}+Z^{2}\right)^{2}}, \\
& \frac{\partial\left(\phi \circ \phi_{x}^{-1}\right)}{\partial Z}=\frac{2 Z}{1+Y^{2}+Z^{2}}-\frac{2 Z^{3}}{\left(1+Y^{2}+Z^{2}\right)^{2}}=\frac{2 Z\left(1+Y^{2}\right)}{\left(1+Y^{2}+Z^{2}\right)^{2}} .
\end{aligned}
$$

Thus the differential vanishes at $[1: Y: 0]$ for any Y. In a similar way, we can show that for $(X, Z) \in \phi_{y}\left(U_{y}\right)$, the differential vanishes at $[X: 1: 0]$ for any X.
We next consider $(X, Y) \in \phi_{z}\left(U_{z}\right)$. In this case, we have

$$
\psi \circ \phi_{z}^{-1}(X, Y)=\psi([X: Y: 1])=\frac{1}{1+X^{2}+Y^{2}},
$$

and then its derivatives are

$$
\begin{aligned}
& \frac{\partial\left(\psi \circ \phi_{z}^{-1}\right)}{\partial X}=-\frac{2 X}{\left(1+X^{2}+Y^{2}\right)^{2}} \\
& \frac{\partial\left(\psi \circ \phi_{z}^{-1}\right)}{\partial Y}=-\frac{2 Y}{\left(1+X^{2}+Y^{2}\right)^{2}}
\end{aligned}
$$

Thus the differential vanishes at $[0: 0: 1]$.
To summarize, we have found that the differential $d \psi_{p}$ vanishes at $p=[1: Y:$ $0],[X: 1: 0],[0: 0: 1]$ where $X, Y \in \mathbb{R}$.
2. For $S^{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}$, we use the coordinates introduced in Problem 1 -(1)-1, that is, we consider the atlas $\left\{\left(O_{x}^{ \pm}, \varphi_{x}^{ \pm}\right),\left(O_{y}^{ \pm}, \varphi_{y}^{ \pm}\right),\left(O_{z}^{ \pm}, \varphi_{z}^{ \pm}\right)\right\}$where the open sets are defined by

$$
\begin{array}{ll}
O_{x}^{+}=\left\{(x, y, z) \in S^{2} \mid x>0\right\}, & O_{x}^{-}=\left\{(x, y, z) \in S^{2} \mid x<0\right\}, \\
O_{y}^{+}=\left\{(x, y, z) \in S^{2} \mid y>0\right\}, & O_{y}^{-}=\left\{(x, y, z) \in S^{2} \mid y<0\right\}, \\
O_{z}^{+}=\left\{(x, y, z) \in S^{2} \mid z>0\right\}, & O_{z}^{-}=\left\{(x, y, z) \in S^{2} \mid z<0\right\}
\end{array}
$$

and $\varphi_{x}^{ \pm}, \varphi_{y}^{ \pm}, \varphi_{z}^{ \pm}$are maps from the corresponding open sets to a two-dimensional open disk $D^{2}=\left\{(a, b) \in \mathbb{R}^{2} \mid a^{2}+b^{2}<1\right\}$:

$$
\begin{aligned}
& \varphi_{x}^{+}(x, y, z)=\varphi_{x}^{-}(x, y, z)=(y, z), \\
& \varphi_{y}^{+}(x, y, z)=\varphi_{y}^{-}(x, y, z)=(x, z), \\
& \varphi_{z}^{+}(x, y, z)=\varphi_{z}^{-}(x, y, z)=(x, y) .
\end{aligned}
$$

We also recall that the inverses of these maps are

$$
\left(\varphi_{x}^{ \pm}\right)^{-1}(a, b)=\left(\pm\left(1-a^{2}-b^{2}\right)^{1 / 2}, a, b\right),
$$

$$
\begin{aligned}
& \left(\varphi_{y}^{ \pm}\right)^{-1}(a, b)=\left(a, \pm\left(1-a^{2}-b^{2}\right)^{1 / 2}, b\right), \\
& \left(\varphi_{z}^{ \pm}\right)^{-1}(a, b)=\left(a, b, \pm\left(1-a^{2}-b^{2}\right)^{1 / 2}\right) .
\end{aligned}
$$

Here $(a, b) \in D^{2}=\left\{(a, b) \in \mathbb{R}^{2} \mid a^{2}+b^{2}<1\right\}$. For $\mathbb{R} P^{2}$, we introduce the coordinates in the same way as the previous problem.

Then we can have

$$
\begin{aligned}
\phi_{x} \circ \pi \circ\left(\varphi_{x}^{ \pm}\right)^{-1}(a, b) & =\phi_{x} \circ \pi\left(\pm\left(1-a^{2}-b^{2}\right)^{1 / 2}, a, b\right) \\
& = \pm\left(\frac{a}{\left(1-a^{2}-b^{2}\right)^{1 / 2}}, \frac{b}{\left(1-a^{2}-b^{2}\right)^{1 / 2}}\right), \\
\phi_{y} \circ \pi \circ\left(\varphi_{y}^{ \pm}\right)^{-1}(a, b) & =\phi_{y} \circ \pi\left(a, \pm\left(1-a^{2}-b^{2}\right)^{1 / 2}, b\right) \\
& = \pm\left(\frac{a}{\left(1-a^{2}-b^{2}\right)^{1 / 2}}, \frac{b}{\left(1-a^{2}-b^{2}\right)^{1 / 2}}\right), \\
\phi_{z} \circ \pi \circ\left(\varphi_{z}^{ \pm}\right)^{-1}(a, b) & =\phi_{z} \circ \pi\left(a, b, \pm\left(1-a^{2}-b^{2}\right)^{1 / 2}\right) \\
& = \pm\left(\frac{a}{\left(1-a^{2}-b^{2}\right)^{1 / 2}}, \frac{b}{\left(1-a^{2}-b^{2}\right)^{1 / 2}}\right) .
\end{aligned}
$$

Thus we get the Jacobian for $\phi_{i} \circ \pi \circ\left(\varphi_{i}^{ \pm}\right)$(where $\left.i=x, y, z\right)$ as follows:

$$
\pm \frac{1}{\left(1-a^{2}-b^{2}\right)^{3 / 2}}\left(\begin{array}{cc}
1-b^{2} & a b \\
a b & 1-a^{2}
\end{array}\right)
$$

Then the determinant to this matrix is given by

$$
\frac{\left(1-b^{2}\right)\left(1-a^{2}\right)-a^{2} b^{2}}{\left(1-a^{2}-b^{2}\right)^{3}}=\frac{1-a^{2}-b^{2}}{\left(1-a^{2}-b^{2}\right)^{3}}=\frac{1}{\left(1-a^{2}-b^{2}\right)^{2}},
$$

which is nonzero for any $(a, b) \in D^{2}$. We have confirmed that the Jacobian is not degenerate at any $(a, b) \in D^{2}$. At a point $p \in O_{i}^{ \pm}(i=x, y, z)$, the Jacobian for $\phi_{i} \circ \pi \circ\left(\varphi_{i}^{ \pm}\right)^{-1}$ at $\varphi_{i}^{ \pm}(p)$ gives a coordinate expression of the differential map $d \pi_{p}$, and thus the non-degenerate Jacobian means that the differential map $d \pi_{p}$ is isomorphic. We thus conclude that at any point $p \in S^{2}, d \pi_{p}$ is isomorphic.

