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1 Lie Bracket

(1) We have at each point in R3, for C∞ function f , (in the following we evaluate at each
point p ∈ R3, but we do not write it explicitly to simplify the notation)

[X,Y ]f = X(Y f)− Y (Xf)

= (x∂x − y∂y + z∂z)(x∂yf)− x∂y(x∂xf − y∂yf + z∂zf)

= x∂yf + x(x∂x − y∂y + z∂z)(∂yf) + x∂yf − x(x∂x − y∂y + z∂z)(∂yf)

= 2x∂yf

= 2Y f .

Thus we have obtained [X,Y ] = 2Y . In a similar way, we have

[Y,Z]f = Y (Zf)− Z(Y f)

= (x∂y)

(
y∂xf +

1 + yz

x
∂zf

)
−
(
y∂x +

1 + yz

x
∂z

)
(x∂yf)

= x∂xf + z∂zf − y∂yf
= Xf ,

[Z,X]f = Z(Xf)−X(Zf)

=

(
y∂x +

1 + yz

x
∂z

)
(x∂xf − y∂yf + z∂zf)− (x∂x − y∂y + z∂z)

(
y∂xf +

1 + yz

x
∂zf

)
= y∂xf +

1 + yz

x
∂zf −

(
−x1 + yz

x2
∂zf − y∂xf − y

z

x
∂zf + z

y

x
∂zf

)
= 2y∂xf + 2

1 + yz

x
∂zf

= 2Zf ,

and thus we have obtained [Y, Z] = X and [Z,X] = 2Z .
(2) Following the lecture, we take a local coordinate in the neighborhood of a point p ∈M
and denote it as xi. By using this we write the vector fields X,Y, Z on the neighborhood
can be denoted as

X =
∑
i

ξi
∂

∂xi
, Y =

∑
i

ηj
∂

∂xi
, Z =

∑
i

χj ∂

∂xi
.
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We also take an C∞ function h in this neighborhood of p. Then we can evaluate (in the
following we evaluate at point p, but do not write it explicitly to simplify the notation)

Y h =
∑
j

ηj
∂h

∂xj
,

and then

X(Y h) =
∑
i,j

ξi
∂

∂xi

(
ηj
∂h

∂xj

)
=
∑
i,j

(
ξiηj

∂2h

∂xi∂xj
+ ξi

∂ηj

∂xi
∂h

∂xj

)
.

Then [X,Y ]h becomes

[X,Y ]h =
∑
i,j

(
(ξiηj − ηiξj) ∂2h

∂xi∂xj
+

(
ξi
∂ηj

∂xi
− ηi∂ξ

j

∂xi

)
∂h

∂xj

)
=
∑
i,j

(
ξi
∂ηj

∂xi
− ηi∂ξ

j

∂xi

)
∂h

∂xj
.

Thus

[X,Y ] =
∑
j

∑
i

(
ξi
∂ηj

∂xi
− ηi∂ξ

j

∂xi

)
∂

∂xj
.

The first three identities can be checked easily from the above expression of the Lie
bracket. We will just consider the 4th and 5th identities below.

We first prove the 4th identity. We can have [Z, [X,Y ]] as

[Z, [X,Y ]] =
∑
i,j

(
χi ∂

∂xi

(∑
k

(
ξk
∂ηj

∂xk
− ηk ∂ξ

j

∂xk

))
−
∑
k

(
ξk
∂ηi

∂xk
− ηk ∂ξ

i

∂xk

)
∂χj

∂xi

)
∂

∂xj

=
∑
i,j,k

(
χiξk

∂2ηj

∂xi∂xk
− χiηk

∂2ξj

∂xi∂xk

)
∂

∂xj

+
∑
i,j,k

(
χi∂ξ

k

∂xi
∂ηj

∂xk
− χi∂η

k

∂xi
∂ξj

∂xk
− ξk ∂η

i

∂xk
∂χj

∂xi
+ ηk

∂ξi

∂xk
∂χj

∂xi

)
∂

∂xj
.

In a similar way we obtain

[X, [Y, Z]] =
∑
i,j,k

(
ξiηk

∂2χj

∂xi∂xk
− ξiχk ∂2ηj

∂xi∂xk

)
∂

∂xj

+
∑
i,j,k

(
ξi
∂ηk

∂xi
∂χj

∂xk
− ξi∂χ

k

∂xi
∂ηj

∂xk
− ηk ∂χ

i

∂xk
∂ξj

∂xi
+ χk ∂η

i

∂xk
∂ξj

∂xi

)
∂

∂xj
,

[Y, [Z,X]] =
∑
i,j,k

(
ηiχk ∂2ξj

∂xi∂xk
− ηiξk ∂2χj

∂xi∂xk

)
∂

∂xj

+
∑
i,j,k

(
ηi
∂χk

∂xi
∂ξj

∂xk
− ηi∂ξ

k

∂xi
∂χj

∂xk
− χk ∂ξ

i

∂xk
∂ηj

∂xi
+ ξk

∂χi

∂xk
∂ηj

∂xi

)
∂

∂xj
.
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By summing them up, we can see that [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.
Now we go to the proof of the 5th identity. We first note that

(gY )h = g
∑
j

ηj
∂h

∂xj
,

and then

(fX)((gY )h) = f
∑
i

ξi
∂

∂xi

g∑
j

ηj
∂h

∂xj


= f

∑
i,j

(
ξi
∂g

∂xi
ηj
∂h

∂xj
+ ξig

∂ηj

∂xi
∂h

∂xj
+ gηiξj

∂2h

∂xi∂xj

)
.

In a similar way, we have

(gY )((fX)h) = g
∑
i,j

(
ηi
∂f

∂xi
ξj
∂h

∂xj
+ ηif

∂ξj

∂xi
∂h

∂xj
+ fξiηj

∂2h

∂xi∂xj

)
.

Then we have

[fX, gY ]h = fg
∑
i,j

(
ξi
∂ηj

∂xi
− ηi∂ξ

j

∂xi

)
∂h

∂xj
+ f

∑
i,j

(
ξi
∂g

∂xi

)
ηj
∂h

∂xj
− g

∑
i,j

(
ηi
∂f

∂xi

)
ξj
∂h

∂xj

= fg[X,Y ]h+ f(Xg)Y h− g(Y f)Xh .

Thus we have confirmed that [fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

2 f-related Vector Field

1. We first compute the Jacobian of f at p = (x, y) ∈ R2 (we note that f(p) =
(x, x2 + y) ≡ (X,Y )):

Df |p =

(
1 0

2x 1

)
=

(
1 0

2X 1

)
.

Thus, f -related vector field of V is obtained as follows: at each point p = (x, y) ∈ R2

for a C∞ function g, we have (here f1, f2 are defined such that f1(x), f2(x) are 1st
and 2nd components of f(x), respectively)

dfp(V |p) g = V (g ◦ f)|p

= (−y)

∂f1
∂x

∣∣∣∣∣
p

∂g

∂X

∣∣∣∣∣
f(p)

+
∂f2
∂x

∣∣∣∣∣
p

∂g

∂Y

∣∣∣∣∣
f(p)

+ x

∂f1
∂y

∣∣∣∣∣
p

∂g

∂X

∣∣∣∣∣
f(p)

+
∂f2
∂y

∣∣∣∣∣
p

∂g

∂Y

∣∣∣∣∣
f(p)


= −(Y −X2)

1× ∂g

∂X

∣∣∣∣∣
f(p)

+2X × ∂g

∂Y

∣∣∣∣∣
f(p)

+X

0× ∂g

∂X

∣∣∣∣∣
f(p)

+1× ∂g

∂Y

∣∣∣∣∣
f(p)
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= −(Y −X2)
∂g

∂X
+X

(
1− 2(Y −X2)

) ∂g
∂Y

∣∣∣∣∣
f(p)

=

[
−(Y −X2)

∂

∂X
+X

(
1− 2(Y −X2)

) ∂

∂Y

]
g

∣∣∣∣∣
f(p)

.

Thus we have obtained

df(V ) = −(Y −X2)
∂

∂X
+X

(
1− 2(Y −X2)

) ∂

∂Y
.

2. Let us first recall that the stereographic protection from the north pole (0, 0, 1) and
south pole (0, 0,−1) and their inverses are given by (U± = S2\{(0, 0,±1)})

f+(x, y, z) =

(
x

1− z
,

y

1− z

)
, for (x, y, z) ∈ U+ ,

f−(x, y, z) =

(
x

1 + z
,

y

1 + z

)
, for (x, y, z) ∈ U− ,

(f+)−1(X,Y ) =

(
2X

X2 + Y 2 + 1
,

2Y

X2 + Y 2 + 1
,
X2 + Y 2 − 1

X2 + Y 2 + 1

)
,

(f−)−1(X ′, Y ′) =

(
2X ′

X ′2 + Y ′2 + 1
,

2Y ′

X ′2 + Y ′2 + 1
,
1−X ′2 − Y ′2

X ′2 + Y ′2 + 1

)
,

for (X,Y ) ∈ f+(U+) = R2 and (X ′, Y ′) ∈ f−(U−) = R2. The transition function
from f+(U+ ∩ U−) to f−(U+ ∩ U−) is given by

φ−+(X,Y ) ≡ f− ◦ (f+)−1(X,Y ) =

(
X

X2 + Y 2
,

Y

X2 + Y 2

)
,

for (X,Y ) ∈ f+(U+) = R2. For later use, we also write down the Jacobian matrix
for (f+)−1 at f+(p) = (x/(1 − z), y/(1 − z)) ≡ (X,Y ) ∈ f+(U+) where p =
(x, y, z) ∈ U+:

D(f+)−1|f+(p) =


2(1−X2+Y 2)
(1+X2+Y 2)2

−4XY
(1+X2+Y 2)2

−4XY
(1+X2+Y 2)2

2(1+X2−Y 2)
(1+X2+Y 2)2

−4X
(1+X2+Y 2)2

−4Y
(1+X2+Y 2)2

 =

 1− z − x2 −xy
−xy 1− z − y2

−x(1− z) −y(1− z)

 .

(We note that x2 + y2 + z2 = 1.) We also write down the Jacobian matrix for φ−+
at (X,Y ) ∈ f+(U+ ∩ U−) :

D(f− ◦ (f+)−1)|(X,Y ) =

(
X2−Y 2

(X2+Y 2)2
− 2XY

(X2+Y 2)2

− 2XY
(X2+Y 2)2

−X2+Y 2

(X2+Y 2)2

)
.

Now we construct a vector field that vanishes only at the north pole of S2. We first
take a C∞ vector field V = ∂X on f+(U+). We can then construct the (f+)−1-
related vector field of V (this vector field is defined on U+). For a C∞ function g
on U+, we have (we abbreviated |p etc. to simplify the notation)

d((f+)−1)(V )g
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= V (g ◦ (f+)−1)

=

(
∂((f+)−1)1

∂X

)(
∂g

∂x

)
+

(
∂((f+)−1)2

∂X

)(
∂g

∂y

)
+

(
∂((f+)−1)3

∂X

)(
∂g

∂z

)
=

[
2(1−X2 + Y 2)

(1 +X2 + Y 2)2
∂x +

−4XY

(1 +X2 + Y 2)2
∂y +

−4X

(1 +X2 + Y 2)2
∂z

]
g

=
[
(1− z − x2)∂x − xy∂y − x(1− z)∂z

]
g .

(Here ((f+)−1)i (i = 1, 2, 3) is defined such that ((f+)−1)i(X,Y ) are the i-th com-
ponent of (f+)−1(X,Y ).) Here we have used the Jacobian obtained above. From
this expression, d((f+)−1)(V ) is smooth on U+ and non-vanishing at any point on
U+.

We next confirm that this vector field is smoothly extended to the north pole (0, 0, 1)
and the extension vanishes at the north pole. To see this, we consider φ−+-related
vector field of V (this vector field is defined on f−(U+ ∩ U−) = R2\{(0, 0)}). For
an arbitrary C∞ function h on f−(U+ ∩U−), we have (here we abbreviated |p etc.
to simplify the notation)

d(φ−+)(V )h = V (h ◦ φ−+)

=

(
(φ−+)1
∂X

)(
∂h

∂X ′

)
+

(
(φ−+)2
∂X

)(
∂h

∂Y ′

)
=

[
X2 − Y 2

(X2 + Y 2)2
∂X′ +

−2XY

(X2 + Y 2)2
∂Y ′

]
h

=
[
((X ′)2 − (Y ′)2)∂X′ − 2X ′Y ′∂Y ′

]
h .

(Here (φ−+)1, (φ−+)2 are defined such that (φ−+)1(X,Y ), (φ−+)2(X,Y ) are 1st
and 2nd components of φ−+(X,Y ), respectively.) From this expression, we can
smoothly extend d(φ−+)(V ) to (X ′, Y ′) = (0, 0) which corresponds to the north
pole of S2. Thus the vector field d((f+)−1)(V ) is also smoothly extended to S2. In
particular, since the extension of d(φ−+)(V ) vanishes at (X ′, Y ′) = (0, 0), then the
extension of d((f+)−1)(V ) vanishes at the north pole. To summarize, the vector
W defined by

W =

{
0 at north pole ,
d((f+)−1)(V ) otherwise ,

is a C∞ vector field on S2 which vanishes only at the north pole.

——memo—-
Hairy Ball Theorem
On even-dimensional spheres, there is no non vanishing continuous tangent vector
field.
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3 Left-invariant Vector Field

1. We first recall that for X ∈ TInGL(n,R) there exists a curve c : (a, b)→ GL(n,R)
satisfying c(t = 0) = In and

Xf =
d(f ◦ c)
dt

∣∣∣∣∣
t=0

= (dc)t=0

(
d

dt

∣∣∣∣∣
t=0

)
f ,

for an arbitrary C∞ function f in the neighborhood of In, and thus

X = (dc)t=0

(
d

dt

∣∣∣∣∣
t=0

)
.

We also notice that

d(f ◦ c)
dt

∣∣∣∣∣
t=0

=
∑
i,j

dcij
dt

∣∣∣∣∣
t=0

∂f

∂xij

∣∣∣∣∣
In

,

(Here we denoted (i, j)-component of c(t) as cij(t) for simplicity. In other words,
by denoting the projection of g ∈ GL(n,R) to (i, j)-component as xij , cij = xij ◦ c)
and thus

Aij =
dcij
dt

∣∣∣∣∣
t=0

.

Now we prove the relation in the problem. For C∞ function h in the neighborhood
of g, we have

(d`g)In(X)h = (d`g)In

(
(dc)t=0

(
d

dt

∣∣∣∣∣
t=0

))
h

= (d(`g ◦ c))t=0

(
d

dt

∣∣∣∣∣
t=0

)
h

=
d(h ◦ `g ◦ c)

dt

∣∣∣∣∣
t=0

=
∑
i,j

d(`g ◦ c)ij
dt

∣∣∣∣∣
t=0

∂h

∂xij

∣∣∣∣∣
`g◦c(t=0)=g

=
∑
i,j,k

gik
dckj
dt

∣∣∣∣∣
t=0

∂h

∂xij

∣∣∣∣∣
g

=
∑
i,j,k

gikAkj
∂h

∂xij

∣∣∣∣∣
g

= (gX)h .

Here gX is what we have defined in the problem. Thus we conclude that (d`g)In(X) =
gX.
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2. Now we notice that, by the definition of the left-invariant vector field, we have (we
denote X̃ evaluated at g ∈ GL(n,R) as X̃g)

(d`g)x(X̃x) = X̃gx ,

for x, g ∈ GL(n,R). By setting x = In, we obtain

(d`g)In(X) = X̃gIn = X̃g .

Here we have used X̃g=In = X. Comparing with the result of the previous problem,
we conclude that X̃g = gX.
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