Solution Set for Exercise Session No. 7

Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1) 15th January, 2015, at Room 235A

Lecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr)
Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 Lie Bracket

(1) We have at each point in \mathbb{R}^{3}, for C^{∞} function f, (in the following we evaluate at each point $p \in \mathbb{R}^{3}$, but we do not write it explicitly to simplify the notation)

$$
\begin{aligned}
{[X, Y] f } & =X(Y f)-Y(X f) \\
& =\left(x \partial_{x}-y \partial_{y}+z \partial_{z}\right)\left(x \partial_{y} f\right)-x \partial_{y}\left(x \partial_{x} f-y \partial_{y} f+z \partial_{z} f\right) \\
& =x \partial_{y} f+x\left(x \partial_{x}-y \partial_{y}+z \partial_{z}\right)\left(\partial_{y} f\right)+x \partial_{y} f-x\left(x \partial_{x}-y \partial_{y}+z \partial_{z}\right)\left(\partial_{y} f\right) \\
& =2 x \partial_{y} f \\
& =2 Y f .
\end{aligned}
$$

Thus we have obtained $[X, Y]=2 Y$. In a similar way, we have

$$
\begin{aligned}
{[Y, Z] f } & =Y(Z f)-Z(Y f) \\
& =\left(x \partial_{y}\right)\left(y \partial_{x} f+\frac{1+y z}{x} \partial_{z} f\right)-\left(y \partial_{x}+\frac{1+y z}{x} \partial_{z}\right)\left(x \partial_{y} f\right) \\
& =x \partial_{x} f+z \partial_{z} f-y \partial_{y} f \\
& =X f, \\
{[Z, X] f=} & Z(X f)-X(Z f) \\
= & \left(y \partial_{x}+\frac{1+y z}{x} \partial_{z}\right)\left(x \partial_{x} f-y \partial_{y} f+z \partial_{z} f\right)-\left(x \partial_{x}-y \partial_{y}+z \partial_{z}\right)\left(y \partial_{x} f+\frac{1+y z}{x} \partial_{z} f\right) \\
= & y \partial_{x} f+\frac{1+y z}{x} \partial_{z} f-\left(-x \frac{1+y z}{x^{2}} \partial_{z} f-y \partial_{x} f-y \frac{z}{x} \partial_{z} f+z \frac{y}{x} \partial_{z} f\right) \\
= & 2 y \partial_{x} f+2 \frac{1+y z}{x} \partial_{z} f \\
= & 2 Z f,
\end{aligned}
$$

and thus we have obtained $[Y, Z]=X$ and $[Z, X]=2 Z$.
(2) Following the lecture, we take a local coordinate in the neighborhood of a point $p \in M$ and denote it as x^{i}. By using this we write the vector fields X, Y, Z on the neighborhood can be denoted as

$$
X=\sum_{i} \xi^{i} \frac{\partial}{\partial x^{i}}, \quad Y=\sum_{i} \eta^{j} \frac{\partial}{\partial x^{i}}, \quad Z=\sum_{i} \chi^{j} \frac{\partial}{\partial x^{i}} .
$$

We also take an C^{∞} function h in this neighborhood of p. Then we can evaluate (in the following we evaluate at point p, but do not write it explicitly to simplify the notation)

$$
Y h=\sum_{j} \eta^{j} \frac{\partial h}{\partial x^{j}},
$$

and then

$$
X(Y h)=\sum_{i, j} \xi^{i} \frac{\partial}{\partial x^{i}}\left(\eta^{j} \frac{\partial h}{\partial x^{j}}\right)=\sum_{i, j}\left(\xi^{i} \eta^{j} \frac{\partial^{2} h}{\partial x^{i} \partial x^{j}}+\xi^{i} \frac{\partial \eta^{j}}{\partial x^{i}} \frac{\partial h}{\partial x^{j}}\right) .
$$

Then $[X, Y] h$ becomes

$$
[X, Y] h=\sum_{i, j}\left(\left(\xi^{i} \eta^{j}-\eta^{i} \xi^{j}\right) \frac{\partial^{2} h}{\partial x^{i} \partial x^{j}}+\left(\xi^{i} \frac{\partial \eta^{j}}{\partial x^{i}}-\eta^{i} \frac{\partial \xi^{j}}{\partial x^{i}}\right) \frac{\partial h}{\partial x_{j}}\right)=\sum_{i, j}\left(\xi^{i} \frac{\partial \eta^{j}}{\partial x^{i}}-\eta^{i} \frac{\partial \xi^{j}}{\partial x^{i}}\right) \frac{\partial h}{\partial x_{j}} .
$$

Thus

$$
[X, Y]=\sum_{j} \sum_{i}\left(\xi^{i} \frac{\partial \eta^{j}}{\partial x^{i}}-\eta^{i} \frac{\partial \xi^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x_{j}} .
$$

The first three identities can be checked easily from the above expression of the Lie bracket. We will just consider the 4 th and 5 th identities below.

We first prove the 4th identity. We can have $[Z,[X, Y]]$ as

$$
\begin{aligned}
{[Z,[X, Y]]=} & \sum_{i, j}\left(\chi^{i} \frac{\partial}{\partial x^{i}}\left(\sum_{k}\left(\xi^{k} \frac{\partial \eta^{j}}{\partial x^{k}}-\eta^{k} \frac{\partial \xi^{j}}{\partial x^{k}}\right)\right)-\sum_{k}\left(\xi^{k} \frac{\partial \eta^{i}}{\partial x^{k}}-\eta^{k} \frac{\partial \xi^{i}}{\partial x^{k}}\right) \frac{\partial \chi^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}} \\
= & \sum_{i, j, k}\left(\chi^{i} \xi^{k} \frac{\partial^{2} \eta^{j}}{\partial x^{i} \partial x^{k}}-\chi^{i} \eta^{k} \frac{\partial^{2} \xi^{j}}{\partial x^{i} \partial x^{k}}\right) \frac{\partial}{\partial x^{j}} \\
& +\sum_{i, j, k}\left(\chi^{i} \frac{\partial \xi^{k}}{\partial x^{i}} \frac{\partial \eta^{j}}{\partial x^{k}}-\chi^{i} \frac{\partial \eta^{k}}{\partial x^{i}} \frac{\partial \xi^{j}}{\partial x^{k}}-\xi^{k} \frac{\partial \eta^{i}}{\partial x^{k}} \frac{\partial \chi^{j}}{\partial x^{i}}+\eta^{k} \frac{\partial \xi^{i}}{\partial x^{k}} \frac{\partial \chi^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}} .
\end{aligned}
$$

In a similar way we obtain

$$
\begin{aligned}
& {[X,[Y, Z]]=} \sum_{i, j, k}\left(\xi^{i} \eta^{k} \frac{\partial^{2} \chi^{j}}{\partial x^{i} \partial x^{k}}-\xi^{i} \chi^{k} \frac{\partial^{2} \eta^{j}}{\partial x^{i} \partial x^{k}}\right) \frac{\partial}{\partial x^{j}} \\
&+\sum_{i, j, k}\left(\xi^{i} \frac{\partial \eta^{k}}{\partial x^{i}} \frac{\partial \chi^{j}}{\partial x^{k}}-\xi^{i} \frac{\partial \chi^{k}}{\partial x^{i}} \frac{\partial \eta^{j}}{\partial x^{k}}-\eta^{k} \frac{\partial \chi^{i}}{\partial x^{k}} \frac{\partial \xi^{j}}{\partial x^{i}}+\chi^{k} \frac{\partial \eta^{i}}{\partial x^{k}} \frac{\partial \xi^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}}, \\
& {[Y,[Z, X]]=\sum_{i, j, k}\left(\eta^{i} \chi^{k} \frac{\partial^{2} \xi^{j}}{\partial x^{i} \partial x^{k}}-\eta^{i} \xi^{k} \frac{\partial^{2} \chi^{j}}{\partial x^{i} \partial x^{k}}\right) \frac{\partial}{\partial x^{j}} } \\
&+\sum_{i, j, k}\left(\eta^{i} \frac{\partial \chi^{k}}{\partial x^{i}} \frac{\partial \xi^{j}}{\partial x^{k}}-\eta^{i} \frac{\partial \xi^{k}}{\partial x^{i}} \frac{\partial \chi^{j}}{\partial x^{k}}-\chi^{k} \frac{\partial \xi^{i}}{\partial x^{k}} \frac{\partial \eta^{j}}{\partial x^{i}}+\xi^{k} \frac{\partial \chi^{i}}{\partial x^{k}} \frac{\partial \eta^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}} .
\end{aligned}
$$

By summing them up, we can see that $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$.
Now we go to the proof of the 5 th identity. We first note that

$$
(g Y) h=g \sum_{j} \eta^{j} \frac{\partial h}{\partial x^{j}},
$$

and then

$$
\begin{aligned}
(f X)((g Y) h) & =f \sum_{i} \xi^{i} \frac{\partial}{\partial x^{i}}\left(g \sum_{j} \eta^{j} \frac{\partial h}{\partial x^{j}}\right) \\
& =f \sum_{i, j}\left(\xi^{i} \frac{\partial g}{\partial x^{i}} \eta^{j} \frac{\partial h}{\partial x^{j}}+\xi^{i} g \frac{\partial \eta^{j}}{\partial x^{i}} \frac{\partial h}{\partial x^{j}}+g \eta^{i} \xi^{j} \frac{\partial^{2} h}{\partial x^{i} \partial x^{j}}\right)
\end{aligned}
$$

In a similar way, we have

$$
(g Y)((f X) h)=g \sum_{i, j}\left(\eta^{i} \frac{\partial f}{\partial x^{i}} \xi^{j} \frac{\partial h}{\partial x^{j}}+\eta^{i} f \frac{\partial \xi^{j}}{\partial x^{i}} \frac{\partial h}{\partial x^{j}}+f \xi^{i} \eta^{j} \frac{\partial^{2} h}{\partial x^{i} \partial x^{j}}\right)
$$

Then we have

$$
\begin{aligned}
{[f X, g Y] h } & =f g \sum_{i, j}\left(\xi^{i} \frac{\partial \eta^{j}}{\partial x^{i}}-\eta^{i} \frac{\partial \xi^{j}}{\partial x^{i}}\right) \frac{\partial h}{\partial x^{j}}+f \sum_{i, j}\left(\xi^{i} \frac{\partial g}{\partial x^{i}}\right) \eta^{j} \frac{\partial h}{\partial x^{j}}-g \sum_{i, j}\left(\eta^{i} \frac{\partial f}{\partial x^{i}}\right) \xi^{j} \frac{\partial h}{\partial x^{j}} \\
& =f g[X, Y] h+f(X g) Y h-g(Y f) X h .
\end{aligned}
$$

Thus we have confirmed that $[f X, g Y]=f g[X, Y]+f(X g) Y-g(Y f) X$.

$2 f$-related Vector Field

1. We first compute the Jacobian of f at $p=(x, y) \in \mathbb{R}^{2}$ (we note that $f(p)=$ $\left.\left(x, x^{2}+y\right) \equiv(X, Y)\right)$:

$$
D f \left\lvert\, p=\left(\begin{array}{cc}
1 & 0 \\
2 x & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
2 X & 1
\end{array}\right) .\right.
$$

Thus, f-related vector field of V is obtained as follows: at each point $p=(x, y) \in \mathbb{R}^{2}$ for a C^{∞} function g, we have (here f_{1}, f_{2} are defined such that $f_{1}(x), f_{2}(x)$ are 1st and 2 nd components of $f(x)$, respectively)

$$
\begin{aligned}
d f_{p}\left(\left.V\right|_{p}\right) g & =\left.V(g \circ f)\right|_{p} \\
& =(-y)\left[\left.\left.\frac{\partial f_{1}}{\partial x}\right|_{p} \frac{\partial g}{\partial X}\right|_{f(p)}+\left.\left.\frac{\partial f_{2}}{\partial x}\right|_{p} \frac{\partial g}{\partial Y}\right|_{f(p)}\right]+x\left[\left.\left.\frac{\partial f_{1}}{\partial y}\right|_{p} \frac{\partial g}{\partial X}\right|_{f(p)}+\left.\left.\frac{\partial f_{2}}{\partial y}\right|_{p} \frac{\partial g}{\partial Y}\right|_{f(p)}\right] \\
& =-\left(Y-X^{2}\right)\left[1 \times\left.\frac{\partial g}{\partial X}\right|_{f(p)}+2 X \times\left.\frac{\partial g}{\partial Y}\right|_{f(p)}\right]+X\left[0 \times\left.\frac{\partial g}{\partial X}\right|_{f(p)}+1 \times\left.\frac{\partial g}{\partial Y}\right|_{f(p)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-\left(Y-X^{2}\right) \frac{\partial g}{\partial X}+\left.X\left(1-2\left(Y-X^{2}\right)\right) \frac{\partial g}{\partial Y}\right|_{f(p)} \\
& =\left.\left[-\left(Y-X^{2}\right) \frac{\partial}{\partial X}+X\left(1-2\left(Y-X^{2}\right)\right) \frac{\partial}{\partial Y}\right] g\right|_{f(p)} .
\end{aligned}
$$

Thus we have obtained

$$
d f(V)=-\left(Y-X^{2}\right) \frac{\partial}{\partial X}+X\left(1-2\left(Y-X^{2}\right)\right) \frac{\partial}{\partial Y} .
$$

2. Let us first recall that the stereographic protection from the north pole $(0,0,1)$ and south pole $(0,0,-1)$ and their inverses are given by $\left(U^{ \pm}=S^{2} \backslash\{(0,0, \pm 1)\}\right)$

$$
\begin{aligned}
f^{+}(x, y, z) & =\left(\frac{x}{1-z}, \frac{y}{1-z}\right), \quad \text { for } \quad(x, y, z) \in U^{+}, \\
f^{-}(x, y, z) & =\left(\frac{x}{1+z}, \frac{y}{1+z}\right), \quad \text { for } \quad(x, y, z) \in U^{-}, \\
\left(f^{+}\right)^{-1}(X, Y) & =\left(\frac{2 X}{X^{2}+Y^{2}+1}, \frac{2 Y}{X^{2}+Y^{2}+1}, \frac{X^{2}+Y^{2}-1}{X^{2}+Y^{2}+1}\right), \\
\left(f^{-}\right)^{-1}\left(X^{\prime}, Y^{\prime}\right) & =\left(\frac{2 X^{\prime}}{X^{\prime 2}+Y^{\prime 2}+1}, \frac{2 Y^{\prime}}{X^{\prime 2}+Y^{\prime 2}+1}, \frac{1-X^{\prime 2}-Y^{\prime 2}}{X^{\prime 2}+Y^{\prime 2}+1}\right),
\end{aligned}
$$

for $(X, Y) \in f^{+}\left(U^{+}\right)=\mathbb{R}^{2}$ and $\left(X^{\prime}, Y^{\prime}\right) \in f^{-}\left(U^{-}\right)=\mathbb{R}^{2}$. The transition function from $f^{+}\left(U^{+} \cap U^{-}\right)$to $f^{-}\left(U^{+} \cap U^{-}\right)$is given by

$$
\phi_{-+}(X, Y) \equiv f^{-} \circ\left(f^{+}\right)^{-1}(X, Y)=\left(\frac{X}{X^{2}+Y^{2}}, \frac{Y}{X^{2}+Y^{2}}\right)
$$

for $(X, Y) \in f^{+}\left(U^{+}\right)=\mathbb{R}^{2}$. For later use, we also write down the Jacobian matrix for $\left(f^{+}\right)^{-1}$ at $f^{+}(p)=(x /(1-z), y /(1-z)) \equiv(X, Y) \in f^{+}\left(U^{+}\right)$where $p=$ $(x, y, z) \in U^{+}$:
$\left.D\left(f^{+}\right)^{-1}\right|_{f^{+}(p)}=\left(\begin{array}{cc}\frac{2\left(1-X^{2}+Y^{2}\right)}{\left(1+X^{2}+Y^{2}\right)^{2}} & \frac{-4 X Y}{\left(1+X^{2}+Y^{2}\right)^{2}} \\ \frac{-4 X Y}{\left(1+X^{2}+Y^{2}\right)^{2}} & \frac{2\left(1+X^{2}-Y^{2}\right)}{\left(1+X^{2}+Y^{2}\right)^{2}} \\ \frac{-4 X}{\left(1+X^{2}+Y^{2}\right)^{2}} & \frac{-4 Y}{\left(1+X^{2}+Y^{2}\right)^{2}}\end{array}\right)=\left(\begin{array}{cc}1-z-x^{2} & -x y \\ -x y & 1-z-y^{2} \\ -x(1-z) & -y(1-z)\end{array}\right)$.
(We note that $x^{2}+y^{2}+z^{2}=1$.) We also write down the Jacobian matrix for ϕ_{-+} at $(X, Y) \in f^{+}\left(U^{+} \cap U^{-}\right)$:

$$
\left.D\left(f^{-} \circ\left(f^{+}\right)^{-1}\right)\right|_{(X, Y)}=\left(\begin{array}{cc}
\frac{X^{2}-Y^{2}}{\left(X^{2}+Y^{2}\right)^{2}} & -\frac{2 X Y}{\left(X^{2}+Y^{2}\right)^{2}} \\
-\frac{2 X Y}{\left(X^{2}+Y^{2}\right)^{2}} & \frac{-X^{2}+Y^{2}}{\left(X^{2}+Y^{2}\right)^{2}}
\end{array}\right) .
$$

Now we construct a vector field that vanishes only at the north pole of S^{2}. We first take a C^{∞} vector field $V=\partial_{X}$ on $f^{+}\left(U^{+}\right)$. We can then construct the $\left(f^{+}\right)^{-1}-$ related vector field of V (this vector field is defined on U^{+}). For a C^{∞} function g on U^{+}, we have (we abbreviated $\left.\right|_{p}$ etc. to simplify the notation)

$$
d\left(\left(f^{+}\right)^{-1}\right)(V) g
$$

$$
\begin{aligned}
& =V\left(g \circ\left(f^{+}\right)^{-1}\right) \\
& =\left(\frac{\partial\left(\left(f^{+}\right)^{-1}\right)_{1}}{\partial X}\right)\left(\frac{\partial g}{\partial x}\right)+\left(\frac{\partial\left(\left(f^{+}\right)^{-1}\right)_{2}}{\partial X}\right)\left(\frac{\partial g}{\partial y}\right)+\left(\frac{\partial\left(\left(f^{+}\right)^{-1}\right)_{3}}{\partial X}\right)\left(\frac{\partial g}{\partial z}\right) \\
& =\left[\frac{2\left(1-X^{2}+Y^{2}\right)}{\left(1+X^{2}+Y^{2}\right)^{2}} \partial_{x}+\frac{-4 X Y}{\left(1+X^{2}+Y^{2}\right)^{2}} \partial_{y}+\frac{-4 X}{\left(1+X^{2}+Y^{2}\right)^{2}} \partial_{z}\right] g \\
& =\left[\left(1-z-x^{2}\right) \partial_{x}-x y \partial_{y}-x(1-z) \partial_{z}\right] g
\end{aligned}
$$

(Here $\left(\left(f^{+}\right)^{-1}\right)_{i}(i=1,2,3)$ is defined such that $\left(\left(f^{+}\right)^{-1}\right)_{i}(X, Y)$ are the i-th component of $\left(f^{+}\right)^{-1}(X, Y)$.) Here we have used the Jacobian obtained above. From this expression, $d\left(\left(f^{+}\right)^{-1}\right)(V)$ is smooth on U^{+}and non-vanishing at any point on U^{+}.

We next confirm that this vector field is smoothly extended to the north pole $(0,0,1)$ and the extension vanishes at the north pole. To see this, we consider ϕ_{-+}-related vector field of V (this vector field is defined on $\left.f^{-}\left(U^{+} \cap U^{-}\right)=\mathbb{R}^{2} \backslash\{(0,0)\}\right)$. For an arbitrary C^{∞} function h on $f^{-}\left(U^{+} \cap U^{-}\right)$, we have (here we abbreviated $\left.\right|_{p}$ etc. to simplify the notation)

$$
\begin{aligned}
d\left(\phi_{-+}\right)(V) h & =V\left(h \circ \phi_{-+}\right) \\
& =\left(\frac{\left(\phi_{-+}\right)_{1}}{\partial X}\right)\left(\frac{\partial h}{\partial X^{\prime}}\right)+\left(\frac{\left(\phi_{-+}\right)_{2}}{\partial X}\right)\left(\frac{\partial h}{\partial Y^{\prime}}\right) \\
& =\left[\frac{X^{2}-Y^{2}}{\left(X^{2}+Y^{2}\right)^{2}} \partial_{X^{\prime}}+\frac{-2 X Y}{\left(X^{2}+Y^{2}\right)^{2}} \partial_{Y^{\prime}}\right] h \\
& =\left[\left(\left(X^{\prime}\right)^{2}-\left(Y^{\prime}\right)^{2}\right) \partial_{X^{\prime}}-2 X^{\prime} Y^{\prime} \partial_{Y^{\prime}}\right] h
\end{aligned}
$$

(Here $\left(\phi_{-+}\right)_{1},\left(\phi_{-+}\right)_{2}$ are defined such that $\left(\phi_{-+}\right)_{1}(X, Y),\left(\phi_{-+}\right)_{2}(X, Y)$ are 1 st and 2 nd components of $\phi_{-+}(X, Y)$, respectively.) From this expression, we can smoothly extend $d\left(\phi_{-+}\right)(V)$ to $\left(X^{\prime}, Y^{\prime}\right)=(0,0)$ which corresponds to the north pole of S^{2}. Thus the vector field $d\left(\left(f^{+}\right)^{-1}\right)(V)$ is also smoothly extended to S^{2}. In particular, since the extension of $d\left(\phi_{-+}\right)(V)$ vanishes at $\left(X^{\prime}, Y^{\prime}\right)=(0,0)$, then the extension of $d\left(\left(f^{+}\right)^{-1}\right)(V)$ vanishes at the north pole. To summarize, the vector W defined by

$$
W=\left\{\begin{array}{lc}
0 & \text { at north pole } \\
d\left(\left(f^{+}\right)^{-1}\right)(V) & \text { otherwise }
\end{array}\right.
$$

is a C^{∞} vector field on S^{2} which vanishes only at the north pole.
——memo-
Hairy Ball Theorem
On even-dimensional spheres, there is no non vanishing continuous tangent vector field.

3 Left-invariant Vector Field

1. We first recall that for $X \in T_{I_{n}} G L(n, \mathbb{R})$ there exists a curve $c:(a, b) \rightarrow G L(n, \mathbb{R})$ satisfying $c(t=0)=I_{n}$ and

$$
X f=\left.\frac{d(f \circ c)}{d t}\right|_{t=0}=(d c)_{t=0}\left(\left.\frac{d}{d t}\right|_{t=0}\right) f
$$

for an arbitrary C^{∞} function f in the neighborhood of I_{n}, and thus

$$
X=(d c)_{t=0}\left(\left.\frac{d}{d t}\right|_{t=0}\right) .
$$

We also notice that

$$
\left.\frac{d(f \circ c)}{d t}\right|_{t=0}=\left.\left.\sum_{i, j} \frac{d c_{i j}}{d t}\right|_{t=0} \frac{\partial f}{\partial x_{i j}}\right|_{I_{n}}
$$

(Here we denoted (i, j)-component of $c(t)$ as $c_{i j}(t)$ for simplicity. In other words, by denoting the projection of $g \in G L(n, \mathbb{R})$ to (i, j)-component as $x_{i j}, c_{i j}=x_{i j} \circ c$) and thus

$$
A_{i j}=\left.\frac{d c_{i j}}{d t}\right|_{t=0}
$$

Now we prove the relation in the problem. For C^{∞} function h in the neighborhood of g, we have

$$
\begin{aligned}
\left(d \ell_{g}\right)_{I_{n}}(X) h & =\left(d \ell_{g}\right)_{I_{n}}\left((d c)_{t=0}\left(\left.\frac{d}{d t}\right|_{t=0}\right)\right) h \\
& =\left(d\left(\ell_{g} \circ c\right)\right)_{t=0}\left(\left.\frac{d}{d t}\right|_{t=0}\right) h \\
& =\left.\frac{d\left(h \circ \ell_{g} \circ c\right)}{d t}\right|_{t=0} \\
& =\left.\left.\sum_{i, j} \frac{d\left(\ell_{g} \circ c\right)_{i j}}{d t}\right|_{t=0} \frac{\partial h}{\partial x_{i j}}\right|_{\ell_{g} \circ c(t=0)=g} \\
& =\left.\left.\sum_{i, j, k} g_{i k} \frac{d c_{k j}}{d t}\right|_{t=0} \frac{\partial h}{\partial x_{i j}}\right|_{g} \\
& =\left.\sum_{i, j, k} g_{i k} A_{k j} \frac{\partial h}{\partial x_{i j}}\right|_{g} \\
& =(g X) h
\end{aligned}
$$

Here $g X$ is what we have defined in the problem. Thus we conclude that $\left(d \ell_{g}\right)_{I_{n}}(X)=$ $g X$.
2. Now we notice that, by the definition of the left-invariant vector field, we have (we denote \tilde{X} evaluated at $g \in G L(n, \mathbb{R})$ as $\left.\tilde{X}_{g}\right)$

$$
\left(d \ell_{g}\right)_{x}\left(\tilde{X}_{x}\right)=\tilde{X}_{g x}
$$

for $x, g \in G L(n, \mathbb{R})$. By setting $x=I_{n}$, we obtain

$$
\left(d \ell_{g}\right)_{I_{n}}(X)=\tilde{X}_{g I_{n}}=\tilde{X}_{g} .
$$

Here we have used $\tilde{X}_{g=I_{n}}=X$. Comparing with the result of the previous problem, we conclude that $\tilde{X}_{g}=g X$.

