Solution Set for Exercise Session No. 8

Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1) 22nd, January 2015, at Room 235A

Lecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr)
Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 Integral Curve

Recall that the integral curve of a vector field X on a manifold M is defined as a curve $c:(a, b) \rightarrow M$ satisfying $d c_{t}\left(\left.(d / d t)\right|_{t}\right)=X_{c(t)}$. We denote as $c(t)=(x(t), y(t))$. Then from the definition, by using C^{∞} function f, we have

$$
\begin{aligned}
X_{c(t)} f & =-\left.y(t) \frac{\partial f}{\partial x}\right|_{c(t)}+\left.x(t) \frac{\partial f}{\partial y}\right|_{c(t)}, \\
d c_{t}\left(\left.(d / d t)\right|_{t}\right) f & =\left.\frac{d(f \circ c)}{d t}\right|_{t}=\left.\left.\frac{d x}{d t}\right|_{t} \frac{\partial f}{\partial x}\right|_{c(t)}+\left.\left.\frac{d y}{d t}\right|_{t} \frac{\partial f}{\partial y}\right|_{c(t)},
\end{aligned}
$$

and thus by comparing these we obtain

$$
\left.\frac{d x}{d t}\right|_{t}=-y(t),\left.\quad \frac{d y}{d t}\right|_{t}=x(t) .
$$

By solving this, we obtain (since $d^{2} x / d t^{2}=-x(t)$)

$$
x(t)=A \cos t+B \sin t, \quad y(t)=A \sin t-B \cos t,
$$

where A and B are constants. The initial condition, $(x(0), y(0))=\left(x_{0}, y_{0}\right)$ determines A and B as $A=x_{0}$ and $B=-y_{0}$. Therefore the integral curve is

$$
x(t)=x_{0} \cos t-y_{0} \sin t, \quad y(t)=x_{0} \sin t+y_{0} \cos t .
$$

2 Some Property of Exponential Map of Matrix

1. By taking the derivative directly, we obtain

$$
\begin{aligned}
\frac{d}{d t} e^{t A} & =\frac{d}{d t}\left(1+t A+\frac{1}{2!} t^{2} A^{2}+\frac{1}{3!} t^{3} A^{3}+\cdots\right) \\
& =A+t A^{2}+\frac{1}{2!} t^{2} A^{3}+\cdots \\
& =A\left(1+t A+\frac{1}{2!} t^{2} A^{2}+\cdots\right) \\
& =A e^{t A}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1+t A+\frac{1}{2!} t^{2} A^{2}+\cdots\right) A \\
& =e^{t A} A .
\end{aligned}
$$

2. Since $[A, B]=0$, we obtain

$$
\begin{aligned}
e^{A} e^{B} & =\sum_{m=0}^{\infty} \frac{1}{m!}(A)^{m} \sum_{n=0}^{\infty} \frac{1}{n!}(B)^{n} \\
& =\sum_{l=0}^{\infty} \sum_{k=0}^{l} \frac{1}{k!} A^{k} \frac{1}{(l-k)!} B^{l-k} \\
& =\sum_{l=0}^{\infty} \frac{1}{l!} \sum_{k=0}^{l} \frac{l!}{k!(l-k)!} A^{k} B^{l-k} \\
& =\sum_{l=0}^{\infty} \frac{1}{l!}(A+B)^{l} \\
& =\exp (A+B) .
\end{aligned}
$$

In the middle we have defined $l=m+n$ and $k=m$ and used $[A, B]=0$
3. We first notice that

$$
\begin{aligned}
\frac{d^{n}}{d t^{n}}\left(e^{t A} B e^{-t A}\right) & =\frac{d^{n-1}}{d t^{n-1}}\left(\left[A, e^{t A} B e^{-t A}\right]\right) \\
& =\frac{d^{n-2}}{d t^{n-2}}\left(\left[A,\left[A, e^{t A} B e^{-t A}\right]\right]\right) \\
& =\left[A, \cdots\left[A,\left[A, e^{t A} B e^{-t A}\right]\right] \cdots\right] \\
& =[A, \cdots
\end{aligned}
$$

Here in the final expression there are $n[A, \cdot]$'s. Then by Talyor expanding $e^{t A} B e^{-t A}$ with respect to t around $t=0$, we obtain

$$
e^{t A} B e^{-t A}=B+t[A, B]+\frac{1}{2!} t^{2}[A,[A, B]]+\frac{1}{3!} t^{3}[A,[A,[A, B]]]+\cdots .
$$

Now let us consider the case with $[A, B]=B$. In this case we have $[A,[A, B]]=$ $[A, B]=B$. More generally, we obtain

$$
[A, \cdots[A,[A, B]] \cdots]=B .
$$

Therefore we finally obtain

$$
e^{t A} B e^{-t A}=B+t B+\frac{1}{2!} t^{2} B+\frac{1}{3!} t^{3} B+\cdots=e^{t} B
$$

4. When $[A, B]=C$ and $[A, C]=B$ are satisfied, we have $[A,[A, B]]=[A, C]=B$ and $[A,[A,[A, B]]]=[A,[A, C]]=[A, B]=C$. Thus when there are even number
of the commutators we have $[A, \cdots[A,[A, B]] \cdots]=B$, while for odd number of them we have $[A, \cdots[A,[A, B]] \cdots]=C$. Therefore, we finally obtain

$$
\begin{aligned}
e^{t A} B e^{-t A} & =B+t C+\frac{1}{2!} t^{2} B+\frac{1}{3!} t^{3} C+\cdots \\
& =\left[1+\frac{1}{2!} t^{2}+\cdots\right] B+\left[t+\frac{1}{3!} t^{3}+\cdots\right] C \\
& =(\cosh t) B+(\sinh t) C
\end{aligned}
$$

5. When A is diagonalizable, we can write A as $A=M D M^{-1}$ where M is an $n \times n$ square matrix and $D=\operatorname{diag}\left(d_{1}, d_{2}, \cdots\right)$ is a diagonal matrix. Then we have

$$
\operatorname{det}(\exp (A))=\operatorname{det}\left(M M^{-1} \exp (A)\right)=\operatorname{det}\left(M^{-1} \exp (A) M\right)
$$

Since

$$
\begin{aligned}
M^{-1} \exp (A) M & =M^{-1}\left(\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}\right) M \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}\left(M^{-1} A M\right)^{k} \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}\left(\begin{array}{ccc}
d_{1}^{k} & 0 & \cdots \\
0 & d_{2}^{k} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\exp \left(d_{1}\right) & 0 & \cdots \\
0 & \exp \left(d_{2}\right) & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
\end{aligned}
$$

In the second equality, we have inserted $M M^{-1}=\mathbf{1}_{n}$ between A and A (here $\mathbf{1}_{n}$ is the $n \times n$ unit matrix). Thus we have $\operatorname{det}(\exp (A))=\prod_{i} \exp \left(d_{i}\right)=\exp \left(\sum_{i} d_{i}\right)$.
On the other hand, we have

$$
\exp (\operatorname{tr} A)=\exp \left(\operatorname{tr}\left(M M^{-1} A\right)\right)=\exp \left(\operatorname{tr}\left(M^{-1} A M\right)\right)=\exp \left(\sum_{i} d_{i}\right)
$$

Therefore we have proved the desired relation.
6. In general, one can take an appropriate $n \times n$ matrix M to write A as

$$
A=M J M^{-1}
$$

where J is the Jordan canonical form

$$
J=\left(\begin{array}{cccc}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{k}
\end{array}\right), \quad \text { with } \quad J_{i}=\left(\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \lambda_{i} & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right)
$$

where λ_{i} is a number and J_{i} is a $n_{i} \times n_{i}$ matrix $(i=1,2, \cdots k)$. We note that $n=\sum_{i=1}^{k} n_{i}$. We note that J_{i} is written as $J_{i}=\lambda_{i} \mathbf{1}_{n_{i}}+N_{i}$ where $\mathbf{1}_{n_{i}}$ is the $n_{i} \times n_{i}$ unit matrix and

$$
N_{i}=\left(\begin{array}{cccc}
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right)
$$

This N_{i} satisfies $\left(N_{i}\right)^{n_{i}}=0$ and obviously $\left[\mathbf{1}_{n_{i}}, N_{i}\right]=0$. We also note that $\operatorname{tr} N_{i}=0$ Now we can compute $\operatorname{det}(\exp (A))$ as

$$
\begin{aligned}
\operatorname{det}(\exp (A)) & =\operatorname{det}\left(\exp \left(M^{-1} A M\right)\right) \\
& =\prod_{i=1}^{k} \operatorname{det}\left(\exp \left(\lambda_{i} \mathbf{1}_{n_{i}}+N_{i}\right)\right) \\
& =\prod_{i=1}^{k} \operatorname{det}\left(\exp \left(\lambda_{i} \mathbf{1}_{n_{i}}\right) \exp \left(N_{i}\right)\right) \\
& =\prod_{i=1}^{k} \operatorname{det}\left(\exp \left(\lambda_{i} \mathbf{1}_{n_{i}}\right)\right) \operatorname{det}\left(\exp \left(N_{i}\right)\right) \\
& =\prod_{i=1}^{k} \exp \left(n_{i} \lambda_{i}\right) \operatorname{det}\left(\exp \left(N_{i}\right)\right)
\end{aligned}
$$

Now we evaluate $\operatorname{det}\left(\exp \left(N_{i}\right)\right)$. Since

$$
\begin{aligned}
\exp \left(N_{i}\right) & =\sum_{m=0}^{\infty} \frac{1}{m!}\left(N_{i}\right)^{m} \\
& =\sum_{m=0}^{n_{i}-1} \frac{1}{m!}\left(N_{i}\right)^{m} \\
& =\left(\begin{array}{ccccc}
1 & * & \cdots & \cdots & * \\
0 & 1 & \ddots & & \vdots \\
\vdots & \ddots & 1 & \ddots & \vdots \\
\vdots & & \ddots & 1 & * \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Because of this upper triangle form, we can easily obtain $\operatorname{det}\left(\exp \left(N_{i}\right)\right)=1$. Therefore, we have $\operatorname{det}(\exp (A))=\prod_{i=1}^{k} \exp \left(n_{i} \lambda_{i}\right)$.
On the other hand, we can compute $\exp (\operatorname{tr} A)$ as

$$
\exp (\operatorname{tr} A)=\exp \left(\operatorname{tr} M^{-1} A M\right)
$$

$$
\begin{aligned}
& =\exp \left(\sum_{j=1}^{k} \operatorname{tr}\left(\lambda_{i} \mathbf{1}_{n_{i}}+N_{i}\right)\right) \\
& =\exp \left(\sum_{i=1}^{k} \operatorname{tr}\left(\lambda_{i} \mathbf{1}_{n_{i}}\right)\right) \\
& =\prod_{i=1}^{k} \exp \left(\operatorname{tr}\left(\lambda_{i} \mathbf{1}_{n_{i}}\right)\right) \\
& =\prod_{i=1}^{k} \exp \left(n_{i} \lambda_{i}\right) .
\end{aligned}
$$

Therefore, we have proved the desired relation.

3 Lie Group and Lie Algebra

(1) We first denote the left-invariant vector field corresponding to X as \tilde{X}, and \tilde{X} at $g \in G L(n, \mathbb{R})$ is denoted as \tilde{X}_{g}. As we have seen in Problem Set No.7, we have $\tilde{X}_{g}=g X$ where $g X$ is defined as $\left.\sum_{i, j, k} c_{i k}(t) A_{k j} \frac{\partial f}{\partial x_{i j}}\right|_{c(t)}$. Now we derive the integral curve $c(t)$: $(a, b) \rightarrow G L(n, \mathbb{R})$ by definition satisfying (for a C^{∞} function f on $\operatorname{GL}(n, \mathbb{R})$)

$$
d c_{t}\left(\left.\frac{d}{d t}\right|_{t}\right) f=\tilde{X}_{c(t)} f=\left.\sum_{i, j, k} c_{i k}(t) A_{k j} \frac{\partial f}{\partial x_{i j}}\right|_{c(t)} .
$$

We also note that

$$
d c_{t}\left(\left.\frac{d}{d t}\right|_{t}\right) f=\left.\frac{d(f \circ c)}{d t}\right|_{t}=\left.\left.\sum_{i, j} \frac{d c_{i j}}{d t}\right|_{t} \frac{\partial f}{\partial x_{i j}}\right|_{c(t)} .
$$

Thus we obtain

$$
\left.\frac{d c}{d t}\right|_{t}=c(t) A
$$

The solution of this equation satisfying $c(t)=I_{n}$ is

$$
c(t)=\exp (t A)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} A^{n}
$$

(2)

1. We notice that $(c(t))^{T} c(t)=I_{n}$ from which we obtain (by taking the derivative with respect to t and denoting $(d / d t) c$ evaluated at t as $\left.c^{\prime}(t)\right)$

$$
\left(c^{\prime}(t)\right)^{T} c(t)+c(t) c^{\prime}(t)=0
$$

By by using $c(t)=\exp (t A)$ and $(c(t))^{T}=\exp \left(t A^{T}\right)$ and evaluating this at $t=0$, we obtain

$$
A^{T}+A=0 .
$$

Thus A is $n \times n$ real matrix satisfying $A_{i j}=0$ for $i=j$ and $A_{i j}=-A_{j i}$ for $i \neq j$
NOTE: I think I happened to skip the following explanation on $\operatorname{det} c(t)=1$ condition in the exercise session. Sorry...
We also note that $\operatorname{det} c(t)=1$. Since $\operatorname{det}(\exp (M))=\exp (\operatorname{tr} M)$ for a general square matrix M, we have from $\operatorname{det} c(t)=1$

$$
\exp (\operatorname{tr}(t A))=1
$$

Since $\operatorname{tr}(t A)=t \sum_{i} A_{i i}=0$, this equality is satisfied automatically for X satisfying $A^{T}+A=0$.
2. From the previous problem, we can see that A is an $n \times n$ real matrix satisfying $A_{i j}=0$ for $i=j$ and $A_{i j}=-A_{j i}$ for $i \neq j$. Thus, there are $n(n-1) / 2$ independent components in A. We thus conclude that $\operatorname{dim} \mathfrak{s o}(n, \mathbb{R})=\operatorname{dim} T_{I_{n}} S O(n, \mathbb{R})=n(n-$ 1) $/ 2$.
3. From the above problem, it is obvious that one can write A as given in the problem. One can also evaluate the commutators straightforwardly.
(3) In a similar way, we use the result from (1). We notice that $(c(t))^{T} J c(t)=J$ where $c(t)=\exp (t A)$. Then by taking the derivative with respect to t and setting $t=0$, we obtain

$$
A^{T} J+J A=0 .
$$

Now we denote A as

$$
\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)
$$

where p, q, r, s are real $n \times n$ matrices. Then the above relation for A is equivalent to

$$
\begin{aligned}
& \left(\begin{array}{ll}
p^{T} & q^{T} \\
r^{T} & s^{T}
\end{array}\right)\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)\left(\begin{array}{cc}
p & q \\
r & s
\end{array}\right)=0 \\
& \leftrightarrow \quad\left(\begin{array}{cc}
-r^{T} & p^{T} \\
-s^{T} & q^{T}
\end{array}\right)=-\left(\begin{array}{cc}
r & s \\
-p & -q
\end{array}\right) .
\end{aligned}
$$

We first note that q satisfies $q^{T}=q$ and thus q has $n(n-1) / 2+n=n(n+1) / 2$ independent components. The r also satisfies $r^{T}=r$ and thus has $n(n-1) / 2+n=n(n+1) / 2$ independent components. On the other hand, p, s satisfy $p^{T}=-s$. Thus s is determined completed once p is determined. Thus in p and s, there are n^{2} independent components in total. To summarize, $\operatorname{dim} \mathfrak{s p}(2 n, \mathbb{R})=\operatorname{dim} T_{I_{2 n}} S p(2 n, \mathbb{R})=n(n+1) / 2 \times 2+n^{2}=2 n^{2}+n$

