Mathematical Aspects of Symmetries in Physics : Solution Set No.8

Solution Set for Exercise Session No.8

Course: Mathematical Aspects of Symmetries in Physics,
ICFP Master Program (for M1)
22nd, January 2015, at Room 235A

Lecture by Amir-Kian Kashani-Poor (email: kashani@Ipt.ens.fr)
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1 Integral Curve

Recall that the integral curve of a vector field X on a manifold M is defined as a curve
c: (a,b) — M satisfying de,((d/dt)|;) = X.4). We denote as c(t) = (2(t),y(t)). Then

from the definition, by using C*° function f, we have

of of
X = —y(t)== ==
c(t) c(t)
d(foc) dr| Of dy| Of
dey((d/dt = = | 2L b B
al@aoly = 29| =
t c(t) t c(t)
and thus by comparing these we obtain
dx dy
P, Y =)
t t
By solving this, we obtain (since d?z/dt?> = —xz(t))
x(t) = Acost + Bsint, y(t) = Asint — Bcost,
where A and B are constants. The initial condition, (x(0),y(0)) = (xo,yo) determines A
and B as A = xg and B = —yy. Therefore the integral curve is
x(t) = xgcost — ypsint, y(t) = xgsint + yo cost.

2 Some Property of Exponential Map of Matrix

1. By taking the derivative directly, we obtain

d tA d 1 2 42 1 3 43
Daa = L ar Ty Ly
di© dt( HiAt A A

1
= A+tA2+§t2A3+~-
= A(1+tA+21|t2A2+--~>

— AetA
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= <1+tA+21't2A2+--~)A

= A,
2. Since [A, B] = 0, we obtain
A = Y Ly Ly
N m! n!
m=0 n=0
oo
1 1
I Ik
| — k!
= k! (I1—k)
o l
1 I
_ L Ak gl—Fk
Z il Z kNl —k)!
1=0 " k=0
— 1
= > A+ B)!
=0
= exp(A+ B)

In the middle we have defined [ = m + n and k = m and used [A, B] =0

3. We first notice that

d" A 1A dnt tA o —tA
%(e Be ) T ([A,e Be })
n—2
= (A [A, B

dtan

= [A,---[A[A e4Be )],

Here in the final expression there are n [A, -] ’s. Then by Talyor expanding e!4ABe~tA

with respect to t around ¢ = 0, we obtain

Bt = By 1[4, B]+ 1A, 1A, Bl 4 3 #1A [A,[4, B + -

Now let us consider the case with [A, B] = B. In this case we have [A,[A, B]] =
[A, B] = B. More generally, we obtain

[A,---[A,[A,B]]---]=B.
Therefore we finally obtain

1 1
eABe Y = B4 tB+ EFB + gt?’B +...=¢'B.

4. When [A, B] = C and [A,C] = B are satisfied, we have [A,[A4,B]] = [A,C] =B
[A,[A,B]]] = [A,]A,C]] = [A, B] = C. Thus when there are even number
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of the commutators we have [A,---[A,[A, B]]---] = B, while for odd number of
them we have [A,---[A,[A, B]]-- ] =C. Therefore we finally obtain

1 1
eABe 4 = B+tC+§t2B+§t3C+---
= |1 1752 B+ |t 1753 C
= ottt |t gt +
= (cosht) B + (sinht)C'.

. When A is diagonalizable, we can write A as A = M DM " where M is an n x n
square matrix and D = diag(d;, da,---) is a diagonal matrix. Then we have

det(exp(A)) = det(MM 'exp(A)) = det(M " exp(A)M).

Since

—1 _ -1 - 1 k
M Yexp(AM = M (Zk!A M
— —1
o Zkl AM

w 1 ak 0

k

=2l °®
=\
exp(di) 0

= 0 exp (dQ)

In the second equality, we have inserted MM ~! = 1,, between A and A (here 1,, is
then x n unit matrix). Thus we have det(exp(A)) =[], exp(d;) = exp(D>_, di).

On the other hand, we have
exp(trd) = exp(tr(MM'A)) = exp(tr(MLAM)) = exp (Z dl-) .
i

Therefore we have proved the desired relation.

. In general, one can take an appropriate n x n matrix M to write A as
A=MJM™,

where J is the Jordan canonical form

J1 N1
Ja oo
J = . 5 with Jz = )\Z 5
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where \; is a number and J; is a n; x n; matrix (¢ = 1,2,---k). We note that
n= Zle n;. We note that J; is written as J; = A\;1,, + N; where 1,,, is the n; x n;
unit matrix and

This NV; satisfies (N;)™ = 0 and obviously [1,,, N;] = 0. We also note that trN; = 0

Now we can compute det(exp(A)) as

det(exp(A4)) = det(exp(MLAM))

k
= ][ det(exp(Ni1n, + Ni))
=1
k

= H det(exp(Ai1p,) exp(NV;))
i=1

k

= Hdet(exp()\ilni))det(eXp(Ni))
=1
k

=[] exp(niXi) det(exp(Ny)).
i=1

Now we evaluate det(exp([V;)). Since

exp(N) = (V)"

m.
m=0
n;—1
— 1
DI 100k
m=0
1 = *
0 1
= 1
1 =*
0 0 1

Because of this upper triangle form, we can easily obtain det(exp(XV;)) = 1. There-
fore, we have det(exp(A)) = H?Zl exp(n;A;).

On the other hand, we can compute exp(trA) as

exp(trd) = exp(trM1AM)
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k

= exp Ztr()\zlnl+Nl)
=1

k
= exp (Ztr()\zlm)>
. =1
= Hexp (tr(Aily,))
z;l
= Hexp (nii)
=1

Therefore, we have proved the desired relation.

3 Lie Group and Lie Algebra

(1) We first denote the left-invariant vector field corresponding to X as X, and X at
g € GL(n,R) is denoted as X,. As we have seen in Problem Set No.7, we have X, = gX

. Now we derive the integral curve c(t) :

c(t)
(a,b) = GL(n,R) by definition satisfying (for a C*° function f on GL(n,R))

where gX is defined as 3, ; cik(t)AkjaaTJ;

d ~ af
dey <dt ) f= Xc(t)f = ZCik(t)Akj%
t 1,5,k c(t)
We also note that
d . d(f ] C) . dcij 8f
ace (dt )f_ | =2 Oxi;
t 4 t et
Thus we obtain
de
—| = A.
&), c(t)

The solution of this equation satisfying c(t) = I,, is

o0

tn
c(t) = exp(tA) = ;A”.
n=0

(2)

1. We notice that (c(t))Tc(t) = I,, from which we obtain (by taking the derivative
with respect to ¢ and denoting (d/dt)c evaluated at t as ¢/(t))

(@) e(t) + c()d(t) =0.



Mathematical Aspects of Symmetries in Physics : Solution Set No.8

By by using c(t) = exp(tA) and (c(t))T = exp(tAT) and evaluating this at t = 0,
we obtain

AT+ A4=0.

Thus A is n x n real matrix satisfying A;; = 0 for i = j and A;; = —Aj; for i # j
NOTE: I think I happened to skip the following explanation on det ¢(¢) = 1 condi-
tion in the exercise session. Sorry...

We also note that det c(t) = 1. Since det(exp(M)) = exp(trM) for a general square
matrix M, we have from det c(t) =1

exp(tr(t4)) =1.

Since tr(tA) =t , Ai; = 0, this equality is satisfied automatically for X satisfying
AT+ A=0.

2. From the previous problem, we can see that A is an n x n real matrix satisfying
Ajj =0fori=jand A;; = —Aj; for i # j. Thus, there are n(n—1)/2 independent
components in A. We thus conclude that dimso(n,R) = dim 77, SO(n,R) = n(n —
1)/2.

3. From the above problem, it is obvious that one can write A as given in the problem.

One can also evaluate the commutators straightforwardly.

(3) In a similar way, we use the result from (1). We notice that (c(t))? Je(t) = J where
c(t) = exp(tA). Then by taking the derivative with respect to ¢ and setting t = 0, we
obtain

ATJ+JA=0.

(71);

where p, g, r, s are real n X n matrices. Then the above relation for A is equivalent to
" 4" 0 L\ (0 L\ (pa)_,
rI T -1, 0 -1, O r S
T T
—rt p T s
VRS =— )
(—ST qT) (—p —Q>

We first note that g satisfies ¢! = ¢ and thus ¢ has n(n—1)/24+n = n(n+1)/2 independent
components. The r also satisfies 7 = r and thus has n(n — 1)/2 +n = n(n + 1)/2
independent components. On the other hand, p, s satisfy p? = —s. Thus s is determined
completed once p is determined. Thus in p and s, there are n? independent components in
total. To summarize, dim sp(2n, R) = dimT7,, Sp(2n,R) = n(n+1)/2x2+n?=2n?+n

Now we denote A as



