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1 Integral Curve

Recall that the integral curve of a vector field X on a manifold M is defined as a curve
c : (a, b) → M satisfying dct((d/dt)|t) = Xc(t). We denote as c(t) = (x(t), y(t)). Then
from the definition, by using C∞ function f , we have

Xc(t)f = −y(t)
∂f

∂x

∣∣∣∣∣
c(t)

+x(t)
∂f

∂y

∣∣∣∣∣
c(t)

,

dct((d/dt)|t)f =
d(f ◦ c)
dt

∣∣∣∣∣
t

=
dx

dt

∣∣∣∣∣
t

∂f

∂x

∣∣∣∣∣
c(t)

+
dy

dt

∣∣∣∣∣
t

∂f

∂y

∣∣∣∣∣
c(t)

,

and thus by comparing these we obtain

dx

dt

∣∣∣∣∣
t

= −y(t) ,
dy

dt

∣∣∣∣∣
t

= x(t) .

By solving this, we obtain (since d2x/dt2 = −x(t))

x(t) = A cos t+B sin t , y(t) = A sin t−B cos t ,

where A and B are constants. The initial condition, (x(0), y(0)) = (x0, y0) determines A
and B as A = x0 and B = −y0. Therefore the integral curve is

x(t) = x0 cos t− y0 sin t , y(t) = x0 sin t+ y0 cos t .

2 Some Property of Exponential Map of Matrix

1. By taking the derivative directly, we obtain

d

dt
etA =

d

dt

(
1 + tA+

1

2!
t2A2 +

1

3!
t3A3 + · · ·

)
= A+ tA2 +

1

2!
t2A3 + · · ·

= A

(
1 + tA+

1

2!
t2A2 + · · ·

)
= AetA
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=

(
1 + tA+

1

2!
t2A2 + · · ·

)
A

= etAA .

2. Since [A,B] = 0, we obtain

eAeB =

∞∑
m=0

1

m!
(A)m

∞∑
n=0

1

n!
(B)n

=
∞∑
l=0

l∑
k=0

1

k!
Ak 1

(l − k)!
Bl−k

=

∞∑
l=0

1

l!

l∑
k=0

l!

k!(l − k)!
AkBl−k

=
∞∑
l=0

1

l!
(A+B)l

= exp(A+B) .

In the middle we have defined l = m+ n and k = m and used [A,B] = 0

3. We first notice that

dn

dtn
(
etABe−tA

)
=

dn−1

dtn−1
(
[A, etABe−tA]

)
=

dn−2

dtn−2
(
[A, [A, etABe−tA]]

)
= · · ·
= [A, · · · [A, [A, etABe−tA]] · · · ] .

Here in the final expression there are n [A, ·] ’s. Then by Talyor expanding etABe−tA

with respect to t around t = 0, we obtain

etABe−tA = B + t[A,B] +
1

2!
t2[A, [A,B]] +

1

3!
t3[A, [A, [A,B]]] + · · · .

Now let us consider the case with [A,B] = B. In this case we have [A, [A,B]] =
[A,B] = B. More generally, we obtain

[A, · · · [A, [A,B]] · · · ] = B .

Therefore we finally obtain

etABe−tA = B + tB +
1

2!
t2B +

1

3!
t3B + · · · = etB .

4. When [A,B] = C and [A,C] = B are satisfied, we have [A, [A,B]] = [A,C] = B
and [A, [A, [A,B]]] = [A, [A,C]] = [A,B] = C. Thus when there are even number
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of the commutators we have [A, · · · [A, [A,B]] · · · ] = B, while for odd number of
them we have [A, · · · [A, [A,B]] · · · ] = C. Therefore, we finally obtain

etABe−tA = B + tC +
1

2!
t2B +

1

3!
t3C + · · ·

=

[
1 +

1

2!
t2 + · · ·

]
B +

[
t+

1

3!
t3 + · · ·

]
C

= (cosh t)B + (sinh t)C .

5. When A is diagonalizable, we can write A as A = MDM−1 where M is an n × n
square matrix and D = diag(d1, d2, · · · ) is a diagonal matrix. Then we have

det(exp(A)) = det(MM−1 exp(A)) = det(M−1 exp(A)M) .

Since

M−1 exp(A)M = M−1

( ∞∑
k=0

1

k!
Ak

)
M

=
∞∑
k=0

1

k!
(M−1AM)k

=
∞∑
k=0

1

k!

 dk1 0 · · ·
0 dk2 · · ·
...

...
. . .


=

 exp(d1) 0 · · ·
0 exp(d2) · · ·
...

...
. . .

 .

In the second equality, we have inserted MM−1 = 1n between A and A (here 1n is
then× n unit matrix). Thus we have det(exp(A)) =

∏
i exp(di) = exp(

∑
i di).

On the other hand, we have

exp(trA) = exp(tr(MM−1A)) = exp(tr(M−1AM)) = exp

(∑
i

di

)
.

Therefore we have proved the desired relation.

6. In general, one can take an appropriate n× n matrix M to write A as

A = MJM−1 ,

where J is the Jordan canonical form

J =


J1

J2
. . .

Jk

 , with Ji =


λi 1

λi
. . .
. . . 1

λi

 ,
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where λi is a number and Ji is a ni × ni matrix (i = 1, 2, · · · k). We note that
n =

∑k
i=1 ni. We note that Ji is written as Ji = λi1ni +Ni where 1ni is the ni×ni

unit matrix and

Ni =


0 1

0
. . .
. . . 1

0

 .

This Ni satisfies (Ni)
ni = 0 and obviously [1ni , Ni] = 0. We also note that trNi = 0

Now we can compute det(exp(A)) as

det(exp(A)) = det(exp(M−1AM))

=
k∏

i=1

det(exp(λi1ni +Ni))

=
k∏

i=1

det(exp(λi1ni) exp(Ni))

=

k∏
i=1

det(exp(λi1ni)) det(exp(Ni))

=
k∏

i=1

exp(niλi) det(exp(Ni)) .

Now we evaluate det(exp(Ni)). Since

exp(Ni) =
∞∑

m=0

1

m!
(Ni)

m

=

ni−1∑
m=0

1

m!
(Ni)

m

=



1 ∗ · · · · · · ∗

0 1
. . .

...
...

. . . 1
. . .

...
...

. . . 1 ∗
0 · · · · · · 0 1


.

Because of this upper triangle form, we can easily obtain det(exp(Ni)) = 1. There-
fore, we have det(exp(A)) =

∏k
i=1 exp(niλi).

On the other hand, we can compute exp(trA) as

exp(trA) = exp(trM−1AM)
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= exp

 k∑
j=1

tr(λi1ni +Ni)


= exp

(
k∑

i=1

tr(λi1ni)

)

=
k∏

i=1

exp (tr(λi1ni))

=
k∏

i=1

exp (niλi) .

Therefore, we have proved the desired relation.

3 Lie Group and Lie Algebra

(1) We first denote the left-invariant vector field corresponding to X as X̃, and X̃ at
g ∈ GL(n,R) is denoted as X̃g. As we have seen in Problem Set No.7, we have X̃g = gX

where gX is defined as
∑

i,j,k cik(t)Akj
∂f
∂xij

∣∣∣∣∣
c(t)

. Now we derive the integral curve c(t) :

(a, b)→ GL(n,R) by definition satisfying (for a C∞ function f on GL(n,R))

dct

(
d

dt

∣∣∣∣∣
t

)
f = X̃c(t)f =

∑
i,j,k

cik(t)Akj
∂f

∂xij

∣∣∣∣∣
c(t)

.

We also note that

dct

(
d

dt

∣∣∣∣∣
t

)
f =

d(f ◦ c)
dt

∣∣∣∣∣
t

=
∑
i,j

dcij
dt

∣∣∣∣∣
t

∂f

∂xij

∣∣∣∣∣
c(t)

.

Thus we obtain

dc

dt

∣∣∣∣∣
t

= c(t)A .

The solution of this equation satisfying c(t) = In is

c(t) = exp(tA) =
∞∑
n=0

tn

n!
An .

(2)

1. We notice that (c(t))T c(t) = In from which we obtain (by taking the derivative
with respect to t and denoting (d/dt)c evaluated at t as c′(t))

(c′(t))T c(t) + c(t)c′(t) = 0 .

5



Mathematical Aspects of Symmetries in Physics : Solution Set No.8

By by using c(t) = exp(tA) and (c(t))T = exp(tAT ) and evaluating this at t = 0,
we obtain

AT +A = 0 .

Thus A is n× n real matrix satisfying Aij = 0 for i = j and Aij = −Aji for i 6= j

NOTE: I think I happened to skip the following explanation on det c(t) = 1 condi-
tion in the exercise session. Sorry...
We also note that det c(t) = 1. Since det(exp(M)) = exp(trM) for a general square
matrix M , we have from det c(t) = 1

exp(tr(tA)) = 1 .

Since tr(tA) = t
∑

iAii = 0, this equality is satisfied automatically for X satisfying
AT +A = 0.

2. From the previous problem, we can see that A is an n × n real matrix satisfying
Aij = 0 for i = j and Aij = −Aji for i 6= j. Thus, there are n(n−1)/2 independent
components in A. We thus conclude that dim so(n,R) = dimTInSO(n,R) = n(n−
1)/2.

3. From the above problem, it is obvious that one can write A as given in the problem.
One can also evaluate the commutators straightforwardly.

(3) In a similar way, we use the result from (1). We notice that (c(t))TJc(t) = J where
c(t) = exp(tA). Then by taking the derivative with respect to t and setting t = 0, we
obtain

ATJ + JA = 0 .

Now we denote A as (
p q
r s

)
,

where p, q, r, s are real n× n matrices. Then the above relation for A is equivalent to(
pT qT

rT sT

)(
0 In
−In 0

)
+

(
0 In
−In 0

)(
p q
r s

)
= 0

↔
(
−rT pT

−sT qT

)
= −

(
r s
−p −q

)
.

We first note that q satisfies qT = q and thus q has n(n−1)/2+n = n(n+1)/2 independent
components. The r also satisfies rT = r and thus has n(n − 1)/2 + n = n(n + 1)/2
independent components. On the other hand, p, s satisfy pT = −s. Thus s is determined
completed once p is determined. Thus in p and s, there are n2 independent components in
total. To summarize, dim sp(2n,R) = dimTI2n Sp(2n,R) = n(n+ 1)/2×2 +n2 = 2n2 +n
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