Relativité et Électromagnétisme : TD de soutien n°1 — L7 —

Relativité restreinte

Sébastien Leurent, Marc Lilley & Sylvain Nascimbène 22 février 2012

Exercice 1 : Traversée d'une lame

On considère une lame d'indice propre n' et d'épaisseur propre e', animée d'un mouvement rectiligne uniforme à la vitesse v par rapport au laboratoire, et un faisceau lumineux se propageant dans le même sens que la lame. On note \mathcal{R} le référentiel du laboratoire et \mathcal{R}' le référentiel lié à la lame. À l'instant t=t'=0 le faisceau lumineux atteint la face arrière de la lame, située en x=x'=0.

- 1. Quelle est l'épaisseur e de la lamme dans le réréfentiel \mathcal{R} ?
- 2. À quel instant et à quelle position dans le référentiel \mathcal{R} le faisceau sort-il de la lame?
- 3. Évaluer par 2 méthodes différentes la vitesse du faisceau à l'intérieur de la lame dans le référentiel \mathcal{R} . En déduire l'indice de la lame mesuré par un observateur fixe dans \mathcal{R} .

Exercice 2 : Phénomène d'aberration des étoiles

On s'intéresse à l'aspect du ciel tel qu'il est perçu par un observateur, Ulysse, pilotant une fusée à travers l'espace et le temps. On appelle \mathcal{R} un référentiel où les étoiles sont supposées fixes, et θ l'angle entre une étoile lointaine et l'axe Ox. Ulysse est situé sur l'axe Ox et est animé d'une vitesse v par rapport à cet axe.

- 1. Pour les besoins de sa narration, Homère, qui est fixe dans \mathcal{R} souhaite savoir sous quel angle θ' Ulysse voit cette étoile.
 - Calculer l'angle que détermine Homère par une analyse classique où il considère que la vitesse de la lumière vaut c dans le référentiel \mathcal{R} .
- 2. De même, calculer l'angle θ' sous lequel Ulysse voit cette étoile dans une analyse relativiste. Étudier qualitativement la fonction $\theta'(\theta)$. Si le ciel dans $\mathcal R$ contient de nombreuses étoiles uniformément réparties, que voit Ulysse?
- 3. Calculer enfin la fréquence ω' qui serait reçue par Ulysse si l'étoile envoyait une fréquence unique ω . En supposant que toutes les étoiles de \mathcal{R} émettent un spectre large centré dans le jaune (étoiles de type solaire), décrire qualitativement l'aspect du ciel.

Exercice 3: Vitesses supra-luminiques

En 1977, les astrophysiciens détectent le rayonnement synchrotron émis par un « jet » d'électrons relativistes issu de la radiosource 3C 273. Le suivi du « jet » sur la sphère céleste montre un déplacement de 0.0022 secondes d'arc par an, ce qui implique une vitesse apparente $v_{\rm app.}=10\,c$ à la distance L ~ 600 Mpc de la radiosource¹.

¹Mpc = mega-parsec, où parsec signifie parallaxe-seconde : c'est la distance à laquelle on voit l'unité astronomique (1 U.A.=150 millions de km) sous un angle de 1 seconde d'arc, soit 1 pc=3 10¹⁶ m.

Ce résultat paradoxal remettrait-il en cause le postulat de la relativité restreinte selon lequel la vitesse de la lumière est une limite absolue?

Pour répondre à cette question, considérons le modèle simple de la Fig. 1. Un physicien \mathcal{O} observe le mouvement d'une particule \mathcal{P} située à une distance L de O, origine du repère utilisé par \mathcal{O} . La particule parcourt une droite faisant un angle θ avec Oy à vitesse constante v. Lorsque \mathcal{P} coupe l'axe Oy, elle émet un premier photon (événement E_1). Après un temps Δt , elle en émet un second (événement E_2).

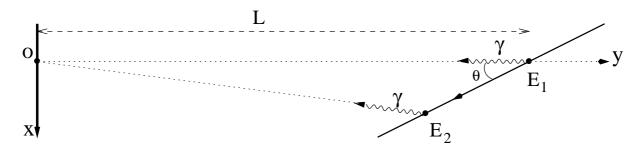


Fig. 1: jet supra-luminique

- 1. En déterminant les instants de réception de ces photons par l'observateur \mathcal{O} , déterminer la vitesse apparente de \mathcal{P} vue par \mathcal{O} (considérer la limite continue $\Delta t \to 0$).
- 2. Calculer l'angle θ maximisant la vitesse apparente puis conclure quant à l'effet observé.