
Lecture II & III: Supplements

THE LANGEVIN EQUATION

A Brownian particle is subjected to an external force due to gravity (or to an electric field

manipulating the particle), and to forces coming from the surrounding fluid, due to collisions

with the molecules. Langevin’s idea was to decompose these latter forces into an average com-

ponent corresponding to friction, and a fluctuating component with very small correlation time,

corresponding to the randomness of the momentum of impinging molecules. For simplicity, let

us consider a Brownian particle confined to move in one dimension, X . The Newton equation

of motion postulated by Langevin is:

m
dV (t)

d t
= −γV (t) + F(X ) +η(t), V (t) =

dX (t)
d t

= Ẋ (t) (1)

where m is the mass of the particle, γ is the friction coefficient, F(X ) the external force and

η(t) the Langevin noise defined as a Gaussian random function, of zero mean and correlator

given by:

G(t, t ′) := 〈η(t)η(t ′)〉=
σ2

0

2τc
exp

�

−
|t − t ′|
τc

�

. (2)

with a very small correlation time τc → 0. Note that the order of magnitude of η is σ0/
p
τc.

In the following, we will consider that m is very small such that the inertial term can be

neglected. In this so called “over-damped limit”, the Langevin equation takes a simpler form:

γ
dX (t)

d t
= F(X ) +η(t). (3)

One can always choose the units of X such that γ = 1. The over-damped Langevin equation

says that the velocity of the particle Ẋ is given by a systematic term F(X ) related to the external

drive and a fluctuating term which is the Gaussian Langevin noise with the characteristics

discussed above.

ITÔ VS. STRATONOVICH PRESCRIPTIONS

The precise meaning of the Langevin equation Ẋ (t) = F(X ) + η(t) deserves special atten-

tion. We shall not go into all details of its various mathematical definitions, but it is important

to have an idea of the source of ambiguity inherent in writing such an equation. Because the
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noise η(t) ∼ τ−1/2
c is divergent in the zero correlation time limit, the Langevin equation can

be ambiguous, in particular in more general situations where η is multiplied by a function of

X .

The physical origin of this ambiguity is that there are two time scales that go to zero in this

problem. One is the infinitesimal (discretization) time scale dt, the other one is the correlation

time of the Langevin noise τc which, in real physical situations, can never be zero. The “phys-

ical” choice therefore corresponds to τc small but fixed, whereas dt → 0 is a mathematical

convenience allowing one to write a differential equation of motion.

Stratonovich prescription: τc � dt. If τc does not go to zero, then η is a perfectly regular

function of time. Therefore the standard rules of differential calculus apply. For example, for

any function f (X , t):
d f
d t
=
∂ f
∂ t
+
∂ f
∂ X

Ẋ , (4)

where Ẋ is given by the Langevin equation Eq. (3). But because τc is not zero, the noise at time

t, η(t), cannot be assumed to be uncorrelated from the past values X (t ′), t ′ ≤ t. Therefore,

averages like 〈g(X (t))η(t)〉 are not zero. They are actually given by the following important

Stratonovitch rule:

〈g(X (t))η(t)〉=
σ2

0

2
〈g ′(X (t))〉, (τc → 0). (5)

Let us sketch the proof of this identity. Because η is Gaussian, one can show that for any function g(X ):

〈g(X (t))η(t)〉=
∫ ∞

−∞
dt ′



∂ g(X (t))
∂ η(t ′)

·

G(t, t ′), (6)

where G(t, t ′) is given in Eq. (2). [Here we use a continuous-time notation, and the derivative ∂ g(X (t))/∂ η(t ′)

is a functional derivative. This should not be particularly scary. It can be understood as the continuous

time limit of a discretized process, where t = nτ.]

If τc is very small, because of the structure (2) of the correlator G(t, t ′), only t ′ close to t will matter

in the integral. Now,

∂ g(X (t))
∂ η(t ′)

= g ′(X (t))
∂ X (t)
∂ η(t ′)

, (7)

and using the short time expansion of the Langevin equation, X (t)≈ X (t ′)+F(X (t))(t−t ′)+
∫ t

t ′ dt ′′η(t ′′)+

O((t − t ′)2). This allows one to obtain, up to higher order corrections in t − t ′:

∂ X (t)
∂ η(t ′)

≈ 1+ F ′(X (t))(t − t ′) + . . . (t ′ < t), (8)
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and therefore, in the limit τc → 0:

〈g(X (t))η(t)〉 ≈
∫ t

−∞
dt ′




g ′(X (t))× [1+ F ′(X (t))(t − t ′)]
� σ2

0

2τc
exp

�

−
|t − t ′|
τc

�

≈
σ2

0

2

�

〈g ′(X (t))〉+τc〈g ′(X (t))F ′(X (t))〉
�

+O(τ2
c ), (9)

leading finally to Eq. (5) above (to leading order in τc).

Let us show how this works in the simple case f (X , t) = X 2, when there is no external force

F(X ) = 0, i.e. Ẋ = η. In this case, we know that by construction of the Brownian motion,

〈X 2(t)〉= σ2
0 t (see section above). By averaging Eq. (4), one finds:

〈
dX 2

d t
〉= 〈2X Ẋ 〉= 〈2Xη〉, (10)

or, using Eq. (5) above with g(X ) = 2X and g ′(X ) = 2,

〈
dX 2

d t
〉= 2

σ2
0

2
= σ2

0, (11)

which recovers the diffusion law 〈X 2〉= σ2
0 t.

Itô prescription: τc ∼ dt. There is another interpretation of the Langevin equation where Eq.

(4) is not correct. It is the limit of the discrete process where the Gaussian noise is independent

in each time interval of size dt → 0. This corresponds to a correlation time τc that goes to

zero equally fast or faster than the discretization time dt. One explicit realization of Itô’s

prescription amounts to using a discrete version of the Langevin equation where X (t + d t) =

X (t)+ d tF(X (t))+ dξ(t). In this case, dξ(t) = η(t)dt is chosen independently of all the past

η(t ′) and therefore it is also independent of any function of these past η(t ′). In particular

X (t) has zero correlation with the “new” η(t), so that 〈g(X (t))η(t)〉 = 0. So the naive chain

rule Eq. (4) would lead, upon averaging, to 〈dX 2/d t〉 = 0! In this case, one has to be very

careful with the fact that dξ(t) is of order
p

dt, so that to compute correctly d f to order dt

one should really write:

d f =
∂ f
∂ t

dt +
∂ f
∂ X

dX +
1
2
∂ 2 f
∂ X 2

dX 2 + . . . , (12)

and using the Langevin equation, dX 2 = (η+ F)2dt2 ≈ η2dt2 which is of order dt since η is

of order dt−1/2.

Itô’s lemma then shows rigorously that in the continuum limit, the correct chain rule in this

case is:
d f
d t
=
∂ f
∂ t
+
∂ f
∂ X

Ẋ +
σ2

0

2
∂ 2 f
∂ X 2

, (13)
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where the last term is called the Itô correction term, that comes from the above mechanism.

Now, for our simple example with F(X ) = 0, f (X , t) = X 2 and Ẋ = η, one clearly recovers the

exact result:

〈
dX 2

d t
〉= 〈2Xη〉+

σ2
0

2
× 2= σ2

0, (14)

since now 〈Xη〉= 0, as noted above.

Summary. Comparing the two prescriptions, we note that:

• For Stratonovich, η(t) ∼ σ0/
p
τc is not divergent when dt → 0. The usual chain rule

applies, but η(t) is correlated with X (t) and any function g(X (t)).

• For Itô, η(t) ∼ σ0/
p

dt is divergent when dt → 0. The usual chain rule does not apply,

and Itô’s correction must be added. However, η(t) is uncorrelated with X (t) and any

function g(X (t)).

These two prescriptions correspond to different physical situations, and can lead to different

results. Some examples will be given below. In financial applications, the Itô interpretation is

more natural since it corresponds to a “noise” (i.e. a price move) that cannot be anticipated.

Question 1: Assuming X (t) follows the Langevin equation with F(X ) = 0 and an arbitrary

correlation time τc, compute exactly 〈X 2(t)〉 for X (t = 0) = 0. What happens in the limit t � τc?

Question 2: Prove the relation Eq. (6.

THE FOKKER-PLANCK EQUATION

Homogeneous case

The Langevin equation is a stochastic differential equation giving the evolution of the

position of a Brownian particle, X (t) (but it can also model other quantities, such as the

price of a financial asset). What can one infer about the evolution of the probability density

P(X , t|X0, t = 0) to observe a certain X at time T , knowing that X = 0 (say) at t = 0?

One would like to derive a partial differential equation obeyed by P(X , t|X0, t = 0). The

trick is to introduce a time independent test function f (X ) and study the time evolution of

〈 f 〉t . By definition,

〈 f 〉t ≡
∫ +∞

−∞
dX P(X , t|X0, t = 0) f (X ), (15)
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from which one gets:

d〈 f 〉t
d t

=

∫ +∞

−∞
dX
∂ P(X , t|X0, t = 0)

∂ t
f (X ), (16)

Now take a trajectory point of view, using first the Stratonovitch prescription and the chain

rule, Eq. (4). Then, upon averaging the change of f during dt,

〈
d f
d t
〉= 〈

∂ f
∂ X

Ẋ (t)〉= 〈
∂ f
∂ X
[F(X ) +η(t)]〉, (17)

which, according to the Stratonovich rule, Eq. (5), reads:

〈
d f
d t
〉= 〈

∂ f
∂ X

F(X )〉+
σ2

0

2
〈
∂ 2 f
∂ X 2
〉. (18)

Making integration by parts, this can be explicitly written as:

〈
d f
d t
〉= −

∫ +∞

−∞
dX
∂ F(X )P(X , t|X0, t = 0)

∂ X
f (X )

+
σ2

0

2

∫ +∞

−∞
dX
∂ 2P(X , t|X0, t = 0)

∂ X 2
f (X ).

Comparing Eqs. (16,19), which must be valid for an arbitrary f (X ), one obtains the partial

differential equation we are looking for, called the ‘Fokker-Planck equation’:

∂ P(X , t|X0, t = 0)
∂ t

= −
∂

∂ X
[F(X )P(X , t|X0, t = 0)] +

σ2
0

2
∂ 2

∂ X 2
P(X , t|X0, t = 0), (19)

supplemented by the boundary condition: P(X , t = 0|X0, t = 0) = δ(X − X0). It is easy to

show that the same equation is obtained using the Itô prescription.

Among the important properties of Fokker-Planck equation is that it admits the Gibbs-

Boltzmann weight as an equilibrium solution. Writing F(X ) = −∂ U/∂ X and choosing σ2
0 =

2kB T , it is easy to check that:

PB(X ) =
1
Z

exp[−
U(X )
kB T

] (20)

is such that the Fokker-Planck equation is satisfied by a time independent probability, provided

the normalisation Z is convergent, i.e.:

Z =

∫ +∞

−∞
dX exp[−

U(X )
kB T

]< +∞, (21)

i.e. that the potential U(X ) grows sufficiently fast when X → ±∞ for the particle to be con-

fined. If Z =∞, equilibrium is never reached, the probability distribution keeps spreading to
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larger and larger distances when t →∞ (like for example in the free diffusion case, F(X )≡ 0.)

In higher dimensions, the force ~F( ~X ) is not necessarily a gradient. If it is, ~F( ~X ) = − ~∇U(X ), the

Boltzmann weight exp[−U(X )
kB T ] is again an equilibrium solution, provided it can be normalised.

If on the other hand, ~F( ~X ) is a rotational, then PS( ~X ) = V−1 uniform within the box of volume

V that defines the system is the stationary solution. In the general case, one does not know

the form of the stationary solution.

Inhomogeneous diffusion and ‘multiplicative’ noise

Consider now the case where the variance of the Langevin noise depends explicitly on the

position X . The Langevin equation reads:

Ẋ (t) = F(X ) + G(X )η(t), (22)

where G(X ) encodes the inhomogeneity of the diffusion constant. Now, the variable X and

the noise η appear in a multiplicative fashion, and the microscopic specification of the model

will be crucial. Repeating the very same calculation as above in the one dimensional case,

one finds that the Fokker-Planck equation takes different forms depending on whether Itô’s

prescription or Stratonovitch’s prescription is used. Writing D(X ) = σ2
0G2(X )/2, one finds in

the former case,:

∂ P(X , t|X0, t = 0)
∂ t

= −
∂

∂ X
[F(X )P(X , t|X0, t = 0)]

+
∂ 2

∂ X 2
[D(X )P(X , t|X0, t = 0)],

whereas in the latter case,

∂ P(X , t|X0, t = 0)
∂ t

= −
∂

∂ X
[F(X )P(X , t|X0, t = 0)]

+
∂

∂ X

�

Æ

D(X )
∂

∂ X

Æ

D(X )P(X , t|X0, t = 0)
�

.

So in this case one sees that the two prescriptions do not lead to the same evolution of

P(X , t|X0, t = 0).

Question 3: Compute the equilibrium state of the Fokker-Planck equation for F(X ) = −kX

and G(X ) = X , for both prescriptions (Itô and Stratonovich).
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