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Superconductivity - M1
Jérôme Lesueur - Kris Van Houcke

TD 3: Fundamental properties of type I superconductors

1 Thermodynamics of type I superconductors

Consider a long cylinder in a magnetic field parallel to its axis. Since we are working at constant

external field H 1, the relevant thermodynamic potential is the Gibbs free energy (in french: ‘enthalpie

libre’):

G(T,H) = F (T,B)−
∫
dr BH , (1)

where F is the Helmholtz Free energy (in french: ‘énergie libre’). At the superconducting transition,

the Gibbs free energies per unit of volume of the normal and superconducting phase must be equal:

gn(T,Hc) = gs(T,Hc) . (2)

This equality determines the thermodynamical critical field Hc(T ) of the transition. (Note that there

is no phase transition at Hc in a so-called type II superconductor. Discussion of type II will follow

in a later TD).

1. Give the free energy difference fn(T,B = 0) − fs(T,B = 0) as a function of Hc(T ) . Assume

that the radius of the cylinder is much larger than the penetration depth.

2. The quantity of the previous question is the condensation energy. It is a measure of the gain in

free energy per unit volume in the superconducting state compared with the normal state at the

same temperature. Let us take Niobium as an example. Here Tc = 9 K and Hc = 160 kA m−1

( Bc = µ0Hc = 0.2 T ). Nb has a bcc crystal structure with a 0.33 nm lattice constant.

Calculate the condensation energy per atom. Is this a big number?

3. Derive an expression for the entropy difference of the normal state and the superconducting

state as a function of the critical field. In presence of a magnetic field, the transition is of first

order. Give an expression for the latent heat. Does the system absorb or emit heat when going

from the superconducting to the normal state?

4. Give an expression for the specific heat difference Cn − Cs . What is the jump in the specific

heat at the transition in absence of a magnetic field (when the transition is of second order)?

1To get a physical feeling for H , consider the situation when there are no external currents fed into the sample. One

can then write for the current density: J(r) = Js(r) + Jext(r) , with Js(r) the supercurrent density at point r in the

sample ( Js = 0 outside) and Jext is the current density in the coils that create the field ( Jext = 0 inside the sample).

All currents contribute to ∇×B = µ0J , but only Jext contributes to ∇×H = Jext . One might be tempted to say

or think that H is the field that would exist if the sample would not be there (for the same Jext in the coils). This is

correct for certain geometries (like the cylindrical one), but it is wrong in general ! For a spherical sample, for example,

the field lines are distorted around the sphere, and this implies a change of H(r) (while ∇×H = Jext remains).
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The specific heat per unit of volume of a metal in the superconducting and normal state is given

by

C = aT 3 , (T < Tc) (3)

C = bT 3 + γT , (T > Tc) , (4)

where a and b are constants that can be related to the spectrum of phonons of the metal and γ is

the Sommerfeld constant. Use this parametrisation and show that

4. the transition temperature in absence of external magnetic field is given by

Tc =

√
3γ

a− b . (5)

5. the temperature dependence of the critical magnetic field is

Hc(T ) = Hc(0)
(

1− (T/Tc)
2
)
, (6)

with Hc(0) = Tc
√
γ/(2µ0) .

6. the difference of the internal energy of the two states in absence of external field reaches a

maximum for T = Tc/
√

3 .

2 Critical current of a superconducting wire

1. Consider an infinitely long superconducting wire of cylindrical shape with radius R with R�
λL . The Silsbee criterion states that the critical value of the current to destroy superconductivity

is that at which the magnetic field due to the current itself is equal to the critical magnetic field.

Give the critical current Ic as a function of the radius R and the critical magnetic field Hc .

2. Does the critical current scale with the cross-sectional area of the wire? What does this imply

about where the current flows in the wire? What would the London theory predict for the critical

current density in this case (answer without trying to solve the London equations explicitly for

this geometry)?

3. To achieve a high critical current, is it better to use one thick wire or to use many thin wires

with the same total cross-section? What about conventional conducting wires?

4. Compute the value of the critical current Ic for a lead wire of radius R = 1 mm at T = 4.2 K.

Lead has a critical temperature of Tc = 7.2K and a critical field of Hc(T = 0) = 800 Oe . The

temperature dependence of the critical field is Hc(T ) = Hc(0)
(
1− (T/Tc)

2
)

. Comment on the

value of Ic .
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3 Intermediate state above the critical current in a superconducting

wire

We consider here a cylindrical wire of radius R� λ carrying a current I > Ic exceeding the critical

value.

1. Based on Silsbee’s rule, if I > Ic , then the surface field exceeds Hc , and at least the sur-

face must become normal. If a surface layer were to go normal then we are left with a fully

superconducting core through which all the current flows. Is such a configuration stable?

2. On the other hand, what if the sample went entirely normal? Is this a stable configuration?

(Hint: calculate the field H(r) as a function of the radius.)

These observations suggest a so-called intermediate state, where both normal and superconducting

regions coexist. From the above questions, we conclude that the nature of the intermediate (mixed)

state in a region r < R0 is dictated by the requirement that H(r) = Hc . For R0 < r < R the wire

is in the normal state. The normal regions, with resistivity ρ , have to carry some current, otherwise

we end up again with an unstable configuration. These requirements are approximately reconciled by

the configuration shown in Fig. 1, first proposed by F. London, in which the fractional path length

(parallel to the axis of the wire) of resistive material is r/R0 .
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Exercise 1: Superconducting wires: Screening e↵ects.

In the second lecture you learned about screening and the London penetration depth �L. With this
additional knowledge, let us revisit Exercise 1.a) from Exercise Sheet 1.

How is the calculation a↵ected? Does the result for the critical current change?

Exercise 2: Superconducting wires: The intermediate state.

In the first exercise sheet we have calculated the critical current Ic of a superconducting wire based
on its critical field Hc. For larger currents I > Ic, however, the situation is not as straightforward
as one might expect.

Consider a cylindrical wire of radius R � � carrying a current I > Ic exceeding the critical value.

(a) Because H(R) > Hc, there will be a normal surface layer. However, it is not possible to have a
remaining superconducting core of radius Rc < R, through which all the current flows. Why?

Comment: What is H(r) of the wire in the initial state, and what is H(r) of the core when
there is a normal surface layer?

(b) On the other hand, why is it also not possible to have the whole wire in the normal state?

Comment: Plot H(r).

Let us now consider the so-called intermediate state, where both normal and superconducting regions
coexist, forming an optimized structure. We will look at the most simple model, first proposed by
London. While being oversimplified, it nicely illustrates how such an intermediate state may work.

(c) For R0  r < R the wire is in the normal state. For r  R0 there is a core region in an
intermediate (mixed) state, where H(r) = Hc, and with a fraction r/R0 of the conduction
path parallel to the axis in the normal state while the rest is superconducting, see Fig. ??.

The normal regions, with resistivity ⇢, also have to carry some current, or we again have the
impossible state described in ??. This requires a longitudinal electric field E = Eẑ.

The structure is assumed constant in time and we neglect all screening e↵ects.

Figure 1: The structure of the intermediate state of a superconducting wire
when I > Ic. The light grey region labelled NC is normal and the dark grey
region labelled SC is superconducting.
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Figure 1: London’s model of the intermediate-state structure in a wire carrying a current in excess of

Ic . The dark grey region is superconducting (SC) while the light grey region is normal (NC).

Any geometry, except an infinitely long cylinder in a field parallel to its axis, has such an inter-

mediate state. In many shapes (due to the demagnetisation factor) there is already an intermediate

state for an external field H < Hc .


