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The field of stochastic thermodynamics began at the end of the 90s and has been a very active
research area since then. As we will see, it is both important from a fundamental point of view and
for experiments and applications on nano- and micro-objects.

The results we are going to derive hold in very general settings, but to be concrete we focus on
a simple case: we consider a non-equilibrium process in which a one dimensional particle verifies the
Langevin equation:
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where the potential V (z(¢), A\(¢)) depends on an external parameter that varies with time from ¢ =0
tot = 7. At time t = 0 the system is at equilibrium and it is brought out of equilibrium at subsequent
times because A(t) is changing. As discussed during the lecture, we are also going to consider the
time-reversed stochastic process in which the coupling varies as Ar(t) = A\(7 —t). In the time-reversed
process the system also starts from equilibrium but with the potential V (z, A(7)). The time-reversed
counterpart of a given path x(t) is defined as xr(t) = x(7 — t). We also recall the general identity on
paths probability densities obtained during the lecture:
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where F' = —B%V(w(t), A(t)).

1 Jarzynski identity

By definition the mechanical work done on the system during a given path is
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1. Show that
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2. Using that the initial condition is at equilibrium show that
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where AF = Fy — F; is the difference between the free-energy of an equilibrium system with
A = A(7) and the one of an equilibrium system with A = A\(0).

3. Using the previous result show that
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where the average is over the stochastic process (note that the work is a stochastic quantity).
This is the famous Jarzynski relation.

4. Starting from the Jarzynski relation show the general thermodynamic (Clausius) inequality:
(W) —=AF >0
The quantity (W) — AF is the dissipated part of the work.



2 Crooks identity

We now study relationships between the forward process and its time-reversed counterpart. Since
the system is out of equilibrium the two processes are not equivalent but one can obtain general
relationships among them.

1. Obtain that the work done during the time-reversed process is Wr = —W.

2. By using the identity (1) show that
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where P(W) is the probability density to observe the work W during the out of equilibrium
process and Pr(W) the probability density to observe the work W during the time-reversed
process. This is the Crooks identity.

3. A measure of the distance between two probability distribution R and @ is given by the Kullback
Leibler divergence
R(x)
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Show that
(W) = AF = TDg(P(W)||Pr(=W))

This equality is a way to related the dissipated part of the work to the difference between the
forward process probability density of the work and its time reversed counterpart.

4. Consider a cyclic process in which in an interval of time 7, A(¢) is brought from Ay to A; by a
given protocol and then back to Ay following the time-reversed protocol. In the adiabatic limit
one expects (W) = 0. When the coupling A instead is changed rapidly one expects (W) > 0.
Show that the Crooks identity implies that during the cycle the probability of negative work is
non-zero.

5. Why is negative work never observed for macroscopic objects? Note that negative work in a
cyclic process violates the second law of thermodynamics.
For which system do you expect that this "violation of the second law” can be observed?

3 Crooks identity for isolated quantum systems

The out of equilibrium protocol is the same one discussed above: the system has a Hamiltonian in
which a coupling A(t) is varied; at time ¢ = 0 the system is at equilibrium, hence characterized by
a Boltzmann density matrix, and it is brought out of equilibrium at subsequent times because A(t)
is changing. We are also going to consider the time-reversed process in which the coupling varies as
Ar(t) = M7 —t). In the time-reversed process the system also starts from equilibrium but with the
Hamiltonian correspondent to (7).

The study of the quantum version of the Jarzynski and Crooks identities lead to debates in the liter-
ature on the notion of "work” in quantum mechanics.

In the following we shall define the work following a thought experiment: at time ¢ = 0 one does a
single measurement of the energy of the system, and gets F;, at the final time ¢ = 7 one does another
single measurement of the energy of the system, and gets Ey. The work done on the system is defined
as W = Ey — E; (there is no heat exchange since the system is isolated).

1. Write down the general expression of the probability P(Ey, E;) to observe the energy E; at time
t = 0 and the energy E at time t; in terms of the evolution operator and the eigenstates of the
initial and final Hamiltonian.



2. Write the probability P(W) of observing the work W in terms of P(Ey, E;).
3. Repeat the analysis for the time-reversed process and obtain the expression of Pr(—W).

4. Obtain the Crooks identity for this out-of equilibrium protocol:
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4 Small challenge-exercise (for later): Jarzynski identity for isolated
classical systems

We now consider a classical isolated system and, again, the same protocol defined above. The me-
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where H is the Hamiltonian (there is no heat exchange since the system is isolated).
Show that the Jarzynski identity

chanical work done on the system is
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holds (hint: you will have to use Liouville theorem).

Suggested readings to know more on Stochastic Thermodynamics are: U. Seifert "Lecture Notes:
Soft Matter. From Synthetic to Biological Materials” (available on the internet); "Stochastic thermo-
dynamics, fluctuation theorems and molecular machines”, Rep. Prog. Phys. 75 (2012) 126001.



