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Mean-field theory is a very powerful tool with several applications in physics. It also had a strong
impact in other fields, such as for example computer science, information and probability theory.
Today we are going to study its foundation, which is twofold: on one hand it is related to the infinite
dimensional limit and on the other it is related to exactly solvable models defined on special kinds of
lattices (often called mean-field like for this reason).

1 Mean-Field Theory and the Infinite Dimensional Limit

We focus on the free energy as a function of the magnetization, or Landau free-energy, defined as:

−βF ({mi}) = ln
∑
{Si}

exp

−β∑
〈ij〉

JijSiSj +
∑
i

βhi(Si −mi)


The his are functions of the mis and β set by the equations

〈Si〉 = mi

where the average is performed with the Hamiltonian above in presence of the magnetic field.
The Ising model we focus on sits on a hypercubic lattice in d spatial dimensions, the coupling constant
Jij = − 1

2d among nearest neighbors spins on the lattice and zero otherwise.
We are now going to perform an expansion introducing the parameter α

−βF ({mi}, α) = ln
∑
{Si}

exp

−αβ∑
〈ij〉

JijSiSj +
∑
i

βhi(Si −mi)

∣∣∣∣∣∣
α=1

The expansion is in powers of α, and α is set equal to one at the end:

−βF ({mi}, α) = −βF ({mi}, 0) +
∂

∂α
[−βF ({mi}, α)]

∣∣∣∣
α=0

α+
1

2

∂2

∂α2
[−βF ({mi}, α)]

∣∣∣∣
α=0

α2 + · · ·

As we shall see, expanding in α corresponds to a 1/d expansion.

1. Compute −βF ({mi}, 0). In order to do this, first find the relationship between hi and mi valid
for α = 0 and then invert it and use the definition of F ({mi}, 0).

−βF ({mi}, 0) =
∑
i

[
−1−mi

2
ln

1−mi

2
− 1 +mi

2
ln

1 +mi

2

]
As a check, set mi = 0 and explain why the resulting value is the correct one.

2. Show that
∂

∂α
[−βF ({mi}, α)]

∣∣∣∣
α=0

= −β
∑
〈ij〉

Jijmimj
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3. The expansion in α can be continued straightforwardly (but a bit painfully at higher order).
The second term reads:

1

2

∂2

∂α2
[−βF ({mi}, α)]

∣∣∣∣
α=0

=
β2

2

∑
〈ij〉

J2
ij(1−m2

i )(1−m2
j )

By evaluating the free energy for a uniform magnetization profile mi = m show that this second
term is negligible in the large d limit.

4. Using the first three terms in the expansion in α (and now setting α = 1) obtain the equations
verified by the magnetization in zero field:

mi = tanh

−∑
j(6=i)

βJijmj − β2
∑
j(6=i)

J2
ijmi(1−m2

j )


Focus on homogenous solutions mi = m (one can show that the solution minimizing the free-
energy is homogeneous) and, by using explicitly that the coupling constant Jij = − 1

2d among
nearest neighbors spins on the lattice and zero otherwise, show that the usual mean-field equa-
tions correspond to the first order in the 1/d expansion and, in consequence, they are exact in
the infinite dimensional limit.

5. Let’s do now an exact Landau expansion in zero field by considering a uniform magnetization
profile mi = m and defining:

−βF ({mi}/N = A0(β) +A1(β)m2 +A2(β)m4 +O(m6)

Show that A1(β) = β
2 −

1
2 −

β2

4d + · · ·

6. A2(β) can be also computed: A2(β) = − 1
12 + β2

8d + · · · . Using these expressions and your
knowledge of Landau theory compute the critical βc for d → ∞ and its first correction in
1/d. For comparison, numerical simulations give βc(3D) ' 1.3272, you can check how the 1/d
expansion performs.

7. The mean field approximation is exact for the Ising model defined on a completely connected
lattice, i.e. where each spin interact with all other spins by a coupling −1/N . This is called the
Curie-Weiss model. Using the expansion we worked out, show that only the first two contribu-
tions to the free energy have to be retained in this case and hence the mean-field equations are
exact for the Curie-Weiss model.

8. Starting from the first two contributions to −βF ({mi}), take the continuum limit and write
down the expression of the Landau free energy obtained from the 1/d expansion.

2 Bethe approximation and random regular graphs (exercise for
later)

Another mean-field approximation that is often used is the so-called Bethe approximation. It is
obtained neglecting loops, or replacing the local euclidean structure by a tree-like one, see Fig.1. In
the following we will apply to the Ising model in two dimensions (just to keep the notation simple).
To be consistent with the notation in the figure we will denote now the Ising spins with the greek
letter σ.

1. Due to the tree-like structure the probability law of σ1, σ2, σ3 in absence of σ0 (the spin in the
center) is factorized:

p0(σ1, σ2, σ3) = p1→0(σ1)p2→0(σ2)p3→0(σ3)
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Figure 1: Tree-like Bethe approximation of a square lattice (the spins are called σ in the figure).

where p1→0(σ1) is the marginal probability distribution of σ1 in absence of σ0. For a binary
variable σi = ±1 justify why the probability law can be written in terms of an effective field hi:

pi→0(σi) =
eβhiσi

2 cosh(βhi)

2. Starting from the recursive equation:

p0→4(σ0) = N
∑

σ1,σ2,σ3

p1→0(σ1)p2→0(σ2)p3→0(σ3)

3∏
i=1

eβJσ0σi

where N is a normalization constant, obtain the recursive equation on the effective fields:

βh0 =
∑
i

tanh−1[tanh(βhi) tanh(βJ)]

3. Considering a uniform field profile and defining m̃ = tanh(βh), write the mean-field equation on
m̃.

4. Generalizing the previous equation to a hypercubic lattice in d dimensions and setting J = 1/(2d)
obtain βc in the limit d→∞ and its first correction in 1/d.

As the previous mean-field approximation is exact for the Curie-Weiss model, one can show that the
Bethe approximation is exact on a random-(2d) regular graph, which is defined as a graph taken at
random with uniform measure on the set of graphs with the same connectivity 2d for each site.
The Bethe approximation has had an enormous success and very broad applications in computer
science and information theory in the last decades. The main reason is that in these fields one often
encounter problems defined on networks that resemble random regular graphs or have a local tree like
structure, and on which the Bethe approximation is exact.

2.1 Solution

1. The probability distribution for a binary variable σ is fixed once p(σ = +1). The representation

p(σi) =
eβhiσi

2 cosh(βhi)

fixes p(σi = +1) through hi and is normalized, i.e. it verifies p(σi = −1) = 1 − p(σi = +1). In
consequence it is a general representation of p(σi).
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2. The probability of observing the spin σ0 in absence of spin σ4 is obtained by summing over all
configurations but the spins σ0, σ1, σ2, σ3 using the Boltzmann weight. This leads to the equation

p0→4(σ0) = N
∑

σ1,σ2,σ3

p1→0(σ1)p2→0(σ2)p3→0(σ3)
3∏
i=1

eβJσ0σi

Using that ∑
σi

pi→0(σi)e
βJσ0σi = N ′eσ0 tanh

−1[tanh(βhi) tanh(βJ)]

and multiplying together the three contributions from σ1, σ2, σ3, one finds the recurrence equation
on the effective fields hi.

3. Taking the hyperbolic tangent of the recursive equation on the effective fields for a uniform field
configuration one obtains:

m̃ = tanh[3 tanh−1[m̃ tanh(βJ)]]

4. In order to generalize to d dimension, one has to consider that there are 2d neighbors; excluding
the ”outgoing” spin (the counterpart of σ4) one gets:

m̃ = tanh[(2d− 1) tanh−1[m̃ tanh(β/2d)]]

5. This equation can be studied graphically. It admits a solution with m̃ different from zero when
the right hand side starts at small m with a slope larger than one. The equation for the critical
temperature is therefore:

1 = (2d− 1) tanh(βc/2d)

which gives βc = 1 + 1
2d +O(1/d2) in the large d limit.

Note that m̃ is not the true magnetization, since it is obtained by cutting one interaction among the
2d− 1 possible ones. The true magnetization is instead m = tanh[2d tanh−1[m̃ tanh(β/2d)]]. When m̃
becomes different from zero, so does m.
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