ICFP M2 - Statistical Physics 2 - TD n ${ }^{\circ} 5$ Random XORSAT problems

Guilhem Semerjian

February 2019

We shall consider in this problem random systems of linear equations, also known as XORSAT problems, denoted F. We recall their definition given during the lectures :

- the degrees of freedom are N Boolean variables, $\underline{x}=\left(x_{1}, \ldots, x_{N}\right) \in\{0,1\}^{N}$
- they have to obey M linear constraints of the form

$$
\begin{equation*}
x_{i_{a}^{1}}+x_{i_{a}^{2}}+\cdots+x_{i_{a}^{k}}=y_{a} \bmod 2, \tag{1}
\end{equation*}
$$

where $a=1, \ldots, M$ indexes the various equations, $k \geq 3$ is an integer defining the number of variables involved in each equation, $\left\langle i_{a}^{1}, \ldots, i_{a}^{k}\right\rangle$ is a k-uplet of distinct indices in $\{1, \ldots, N\}$, and $y_{a} \in\{0,1\}$ fixes the right hand side of the equation.

- such a formula is said to be satisfiable if there is a configuration \underline{x} that verifies all the equations simultaneously, unsatisfiable otherwise.
- a random ensemble of formulas is defined very easily by generating the M equations independently, choosing for each of them a k-uplet $\left\langle i_{a}^{1}, \ldots, i_{a}^{k}\right\rangle$ uniformly at random among the $\binom{N}{k}$ possible ones, and $y_{a}=0$ or 1 with probability $1 / 2$.
Using the Gaussian elimination algorithm one can determine whether a given formula is satisfiable or not in polynomial time. Repeating this process a large number of times one can easily obtain a numerical estimate of the probability $P_{\text {sat }}(\alpha, N)$ that a random formula F with N variables and $M=\alpha N$ equations is satisfiable :

These curves, obtained for $k=3$, suggest that a phase transition occurs in the thermodynamic limit ($N, M \rightarrow$ ∞ with $\alpha=M / N$ fixed) for α around 0.92 . Indeed, there exists a threshold $\alpha_{\text {sat }}$ (that depends on k) such that

$$
\lim _{N \rightarrow \infty} P_{\mathrm{sat}}(\alpha, N)=\left\{\begin{array}{ll}
1 & \text { if } \alpha<\alpha_{\mathrm{sat}} \tag{2}\\
0 & \text { if } \alpha>\alpha_{\mathrm{sat}}
\end{array} .\right.
$$

1 Bounds on $\alpha_{\text {sat }}$

We recall a result obtained in TD2 : for a random variable Z that takes non-negative integer values,

$$
\begin{equation*}
\frac{\mathbb{E}[Z]^{2}}{\mathbb{E}\left[Z^{2}\right]} \leq \mathbb{P}[Z>0] \leq \mathbb{E}[Z] \tag{3}
\end{equation*}
$$

these two inequalities being called the second and first moment method, respectively.
We shall use these inequalities with Z the number of solutions of a random XORSAT formula with N variables and M equations constructed as above.

1. Compute $\mathbb{E}[Z]$, and deduce that $\alpha_{\text {sat }} \leq 1$.
2. Show that

$$
\begin{equation*}
\mathbb{E}\left[Z^{2}\right]=2^{N} \sum_{D=0}^{N}\binom{N}{D}\left(\frac{1}{2} \sum_{\substack{l=0 \\ l \text { even }}}^{k} \frac{\binom{D}{l}\binom{N-D}{k-l}}{\binom{N}{k}}\right)^{M} \tag{4}
\end{equation*}
$$

3. Study the asymptotic behavior of this expression in the thermodynamic limit, and conclude that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \ln \left(\frac{\mathbb{E}[Z]^{2}}{\mathbb{E}\left[Z^{2}\right]}\right)=\inf _{d \in[0,1]} g(\alpha, d), \quad \text { with } g(\alpha, d)=\ln 2+d \ln d+(1-d) \ln (1-d)-\alpha \ln \left(1+(1-2 d)^{k}\right) .
$$

4. Draw the shape of the function g as a function of d for increasing values of α. Conclude that there exists a value $\alpha_{\mathrm{lb}}>0$ (equal to 0.889 for $k=3$) such that for $\alpha<\alpha_{\mathrm{lb}}$, the first term in (3) is not exponentially small. A more detailed analysis of (4) shows that in this case it actually goes to 1 . Conclude that $\alpha_{\mathrm{lb}} \leq \alpha_{\mathrm{sat}} \leq 1$.

2 Leaf removal procedure

The bounds on $\alpha_{\text {sat }}$ obtained above are not tight (i.e. $\alpha_{\mathrm{lb}}<1$) because of the potentially huge fluctuations of Z, that can cause its average $\mathbb{E}[Z]$ to be much larger than its typical value. These fluctuations can be reduced by concentrating on a well-chosen subformula, as explained now.

1. Suppose that F contains a leaf, i.e. a variable that appears in a single equation, and denote F^{\prime} the system of equations obtained by removing this equation. Show that F is satisfiable if and only if F^{\prime} is satisfiable.

This leaf removal procedure can be iterated as long as leaves are present. Two cases can occur : either the formula is completely emptied by this procedure, or there remains a non-trivial subset of F, called its core, in which every variable appears in at least two equations. We call $N_{\text {core }}$ and $M_{\text {core }}$ the number of variables and equations of the core formula, and display on the curves below the fraction $f_{\text {core }}=N_{\text {core }} / N$ of variables in the core and the density $\alpha_{\text {core }}=M_{\text {core }} / N_{\text {core }}$ of equations it contains.

These curves demonstrate a core percolation transition at $\alpha_{\mathrm{d}}=0.818$ (for $k=3$), and show that the density $\alpha_{\text {core }}$ crosses 1 at $\alpha_{*}=0.918$ (for $k=3$).
2. A calculation (not required here) shows that

$$
\begin{equation*}
f_{\text {core }}=1-e^{-\alpha k \phi^{k-1}}-\alpha k \phi^{k-1} e^{-\alpha k \phi^{k-1}}, \quad \frac{1}{N} M_{\text {core }}=\alpha \phi^{k} \tag{5}
\end{equation*}
$$

where $\phi=\phi(\alpha, k)$ is the largest solution in $[0,1]$ of the equation

$$
\begin{equation*}
\phi=1-e^{-\alpha k \phi^{k-1}} . \tag{6}
\end{equation*}
$$

Study graphically this equation, show that for $k \geq 3$ the transition at α_{d} is discontinuous, and study the behavior of ϕ for $\alpha \rightarrow \alpha_{\mathrm{d}}^{+}$.
3. Explain why α_{*} is an improved upperbound on $\alpha_{\text {sat }}$. It turns out that the fluctuations of the core are much smaller than that of the full formula, hence actually $\alpha_{\mathrm{sat}}=\alpha_{*}$.

