Problem 1 Symmetric group

- 1. Let G be a group and S_N the symmetric group, i.e., the group of permutations of $X = \{1, \ldots, N\}$. Show that any group homomorphism $\varphi : G \to S_N$ induces a group action on X by the action $g \cdot x = [\varphi(g)](x)$.
- 2. Consider $\sigma \in S_N$ and the action of \mathbb{Z} defined by the homomorphism

$$\varphi_{\sigma}: \mathbb{Z} \to S_N$$
$$j \mapsto \sigma^j,$$

where we interpret negative powers as powers of the inverse permutation. Find the orbits of this group action for the permutations

j	1	2	3	4	j	1	2	3	4	j	1	2	3	4
$\sigma_1(j)$	3	1	2	4	$\sigma_2(j)$	3	4	1	2	$\sigma_3(j)$	4	2	1	$\overline{3}$.

- 3. Which of the permutations σ_1 , σ_2 , σ_3 are in the same conjugacy class?
- 4. A cycle is defined by a Z-orbit of a permutation with the elements written out in the order in which they occur. Any permutation is uniquely characterized by its cycles. Write out $\sigma_1, \sigma_2, \sigma_3$ and their inverses in terms of their cycles (cycles consisting of a single element are omitted). Use the cycle notation to calculate $\sigma_1 \circ \sigma_2, \sigma_2 \circ \sigma_1, \sigma_3 \circ \sigma_1^{-1} \circ \sigma_2$. What is the order of a permutation that can be expressed as a k-cycle, i.e., a single cycle of k elements and N - k cycles of length one? Show that every k-cycle with $k \ge 2$ can be written as a product of k-1 (not necessarily disjoint) 2-cycles.
- 5. Let $\sigma, \tau \in S_N$ with $\sigma = (j_1, \ldots, j_k)$ a k-cycle. Show that $\tau \sigma \tau^{-1} = (\tau(j_1), \ldots, \tau(j_k))$.
- 6. The cycle type of a permutation is given by the lengths of all of the cycles it contains. Prove that the conjugation classes of S_N are defined by the cycle type.
- 7. Express each of the conjugation classes of S_4 by a Young diagram, following this recipe: Draw each k-cycle as a row of k squares, all cycles stacked on top of each other with larger cycles on the top, aligned on the left. Convince yourself that each diagram represents a partition of 4. Identify the diagrams describing σ_1 , σ_2 , and σ_3 . Find examples of permutations for the other diagrams. How many elements does each conjugacy class have?
- 8. Consider a cube centered at the origin. Assign four different labels to the eight vertices, putting the same label onto pairs of vertices at p and -p. Study the action on these labels for a rotation around a midpoint of a surface, a vortex, and a midpoint of an edge. Show that $S_4 \simeq O$.

Problem 2 Representations

1. Show that irreducible representations r over a \mathbb{C} -vector space \mathcal{E} must have the property that $r[g] = \lambda \operatorname{Id}_{\mathcal{E}}$ with $\lambda \in \mathbb{C}$ for all g from the center Z(G) of the group G.

- 2. Show that two one-dimensional irreducible representations are equivalent if and only if they are the same.
- 3. Find all irreducible representations of $\mathbb{Z}/n\mathbb{Z}$ over \mathbb{C} . Hint: Consider the action of the cyclic group on the complex unit circle.