Problem 1 Symmetric group

1. Let G be a group and S_{N} the symmetric group, i.e., the group of permutations of $X=\{1, \ldots, N\}$. Show that any group homomorphism $\varphi: G \rightarrow S_{N}$ induces a group action on X by the action $g \cdot x=[\varphi(g)](x)$.
2. Consider $\sigma \in S_{N}$ and the action of \mathbb{Z} defined by the homomorphism

$$
\begin{aligned}
\varphi_{\sigma}: \mathbb{Z} & \rightarrow S_{N} \\
j & \mapsto \sigma^{j},
\end{aligned}
$$

where we interpret negative powers as powers of the inverse permutation. Find the orbits of this group action for the permutations

$$
\begin{array}{c|llll}
j & 1 & 2 & 3 & 4 \\
\hline \sigma_{1}(j) & 3 & 1 & 2 & 4
\end{array} \begin{array}{c|cccc}
j & 1 & 2 & 3 & 4 \\
\sigma_{2}(j) & 3 & 4 & 1 & 2
\end{array} \begin{array}{c|cccc}
j & 1 & 2 & 3 & 4 \\
\hline \sigma_{3}(j) & 4 & 2 & 1 & 3
\end{array} .
$$

3. Which of the permutations $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are in the same conjugacy class?
4. A cycle is defined by a \mathbb{Z}-orbit of a permutation with the elements written out in the order in which they occur. Any permutation is uniquely characterized by its cycles. Write out $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and their inverses in terms of their cycles (cycles consisting of a single element are omitted). Use the cycle notation to calculate $\sigma_{1} \circ \sigma_{2}, \sigma_{2} \circ \sigma_{1}, \sigma_{3} \circ \sigma_{1}^{-1} \circ \sigma_{2}$. What is the order of a permutation that can be expressed as a k-cycle, i.e., a single cycle of k elements and $N-k$ cycles of length one? Show that every k-cycle with $k \geq 2$ can be written as a product of $k-1$ (not necessarily disjoint) 2-cycles.
5. Let $\sigma, \tau \in S_{N}$ with $\sigma=\left(j_{1}, \ldots, j_{k}\right)$ a k-cycle. Show that $\tau \sigma \tau^{-1}=\left(\tau\left(j_{1}\right), \ldots, \tau\left(j_{k}\right)\right)$.
6. The cycle type of a permutation is given by the lengths of all of the cycles it contains. Prove that the conjugation classes of S_{N} are defined by the cycle type.
7. Express each of the conjugation classes of S_{4} by a Young diagram, following this recipe: Draw each k-cycle as a row of k squares, all cycles stacked on top of each other with larger cycles on the top, aligned on the left. Convince yourself that each diagram represents a partition of 4 . Identify the diagrams describing σ_{1}, σ_{2}, and σ_{3}. Find examples of permutations for the other diagrams. How many elements does each conjugacy class have?
8. Consider a cube centered at the origin. Assign four different labels to the eight vertices, putting the same label onto pairs of vertices at p and $-p$. Study the action on these labels for a rotation around a midpoint of a surface, a vortex, and a midpoint of an edge. Show that $S_{4} \simeq O$.

Problem 2 Representations

1. Show that irreducible representations r over a \mathbb{C}-vector space \mathcal{E} must have the property that $r[g]=\lambda \operatorname{Id}_{\mathcal{E}}$ with $\lambda \in \mathbb{C}$ for all g from the center $Z(G)$ of the group G.
2. Show that two one-dimensional irreducible representations are equivalent if and only if they are the same.
3. Find all irreducible representations of $\mathbb{Z} / n \mathbb{Z}$ over \mathbb{C}. Hint: Consider the action of the cyclic group on the complex unit circle.
