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1 Cartan formalism

Reminder
Consider one p-form Θ1 and one q-form Θ2, then Θ1 ∧Θ2 is a p+ q-form. It acts on vectors as
follows

Θ1 ∧Θ2 (u1 . . . up+q) =
∑
σ

ε (σ) Θ1
(
uσ(1) . . . uσ(p)

)
Θ2
(
uσ(p+1) . . . uσ(p+q)

)
where σ is a permutation of [1, p+ k] and ε (σ) its signature.
For 1−forms λ and β, it implies that λ ∧ α = −α ∧ β.
The differential operator acts on such product as :

d
(
αΘ1 ∧ . . . ∧Θp

)
=
∂α

∂xi
dxi ∧Θ1 ∧ . . . ∧Θp + αdΘ1 ∧Θ2 . . . ∧Θp + . . .

We recall that for any function f one has d (df) = 0.
Cartan’s method proceeds as follows :

• Define a triad Θα such that gµνdxµdxν = ηµνΘµΘν , where ηµν is Minkowski’s metric (so
that all the indices are hereafter manipulated by η).

• Compute the connection 1− forms wµν using

– the first equation of structure dΘµ + wµν ∧Θν = 0.

– the metricity condition wµν + wνµ = 0.

• Compute the curvature 2-forms Rµν using the second equation of structure

Rµν = dwµν + wµα ∧ wαν .

• Read from R Riemann tensor from

Rµν =
1

2
RµναβΘα ∧Θβ.

Application to Schwarzschild metric
Consider Schwarzschild metric written as

ds2 = −e2νdt2 + e2λdr2 + r2
(
dθ2 + sin2 θdϕ2

)
where ν and λ are purely radial functions.
1-a) Find a proper choice of triad Θα.
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1-b) Translate the metricity conditions into conditions on wµν . What do they imply for Rµν
and for Rµναβ ?
1-c) Find the connections 1−forms.
1-d) Compute the curvature 2−forms.
1-e) Deduce the value of the Riemann tensor.
1-f) For Schwarzschild solution one has

e−2λ = e2ν = 1− 2M

r
.

Show that the Ricci tensor is identically zero.

2 Einstein-Hilbert action

We consider the Einstein-Hilbert action :

S =

∫
Ω

√
−gRd4x

where Ω is a 4-dimensional domain to be specified. g is the 4-dimensional metric, R its
associated Ricci scalar and the covariant derivative will be denoted by ∇.
2-a) Show that the variation of the Ricci tensor can be written as

δRµν = ∇α
(
δΓαµν

)
−∇ν

(
δΓααµ

)
.

2-b) Show that the variation of the Ricci scalar is

δR = ∇αV α +Rµνδg
µν .

Find the expression for V α

Thanks to Gauss integral formula, one can show that the term involving V α is a surface term.
It will be studied later (see 3)) and one can discard it for now...
2-c) Show then that the variation of the action is

δS =

∫
Ω

√
−gGµνδgµνd4x

where Gµν is Einstein tensor, so that Einstein equations in vacuum are indeed recovered.

We recall that Jacobi’s formula: gµνδg
µν = −δg

g
.

3 Gibbson-Hawking-York boundary term

The application of the Gauss integral formula reads∫
Ω

√
−g∇αV αd4x =

∫
∂Ω
ε
√
|h|V αNαd3y

where y is a set of coordinates of ∂Ω, ~N is the unit normal such that NµN
µ = ε and h the

induced metric on the surface.
3-a) Show that

δΓαµν =
1

2
gαβ [∇µδgβν +∇νδgβµ −∇βδgµν ] .
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3-b) Deduce that V λ =
(
gαλgνβ − gλνgαβ

)
∇νδgαβ.

3-c) Under the assumption that δg = 0 on ∂Ω (i.e. Dirichlet boundary conditions), show that
the surface term appearing in δS (i.e. the term involving V α) can be written as

I∂Ω = −
∫
∂Ω
ε
√
|h|hαβNµ∂µ (δgαβ) d3y.

hint : one can use gµν = hµν + εNµNν .
3-d) In order to cancel the term I∂Ω, one can add a surface integral to Einstein-Hilbert action.
The Gibbson-Hawking-York term is a valid choice and is given by

SGHY = 2

∫
∂Ω
ε
√
|h|Y d3y

where Y is the trace of the extrinsic curvature tensor of ∂Ω. One will use the convention such
that Y = hαβ∇αNβ.
Show that the variation δSGHY does indeed cancel the term I∂Ω when δg = 0 on ∂Ω. One will
first show that δNµ = −1/2εNµNαNβδg

αβ.

4 Hamiltonian formulation

One wishes to make the link between the 3+1 formalism and the Hamiltonian description of
the theory (following the work of Arnowitt, Deser and Misner). One will consider only the
vacuum case. Forgetting, for now, the GHY term and all other boundary terms, the action of
the theory is S =

∫
4R
√
−gd4x.

Using the 3+1 quantities it can be rewritten as

S =

∫
t

{∫
Σt

Ld3x

}
dt =

∫
t

{∫
Σt

N
(
R+KijK

ij −K2
)√

γd3x

}
dt.

4-a) The variables of this Lagrangian density L are the q =
(
N,Bi, γij

)
. Compute Kij as a

function of those variables and their time derivative. Deduce the various conjugate momenta

π =
∂L

∂q̇
.

4-b) Using the usual Legendre transform, compute the Hamiltonian density H =
∑
πq̇ − L.

One will write the result as

H = −
∫

Σt

(
NC0 − 2BiCi

)√
γdx3.

4-c) What are Hamilton’s equations associated with N and Bi ? After some more complex
computations, one can show that the equations associated with πij and γij give the definition
of Kij and its evolution equation.

5 REMINDER the 3+1 formalism

We recall that in the 3+1 formalism, spacetime is described as a family of spatial
hypersurfaces on which purely spatial quantities are defined. The whole spacetime is obtained
by giving the time evolution of those quantities.
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Each hypersurface is defined by its normalized normal nµ. The extrinsic curvature tensor Kij

measures the variation of the normal on each hypersurface.
The induced metric on the hypersurfaces is then γµν = gµν + nµnν . For spatial tensors (i.e.
tensors such that nµV

µ = 0), one can relate the 4D derivative to the 3D ones by using the
projection operator γ. For instance, one has

DµV
ν = γαµγ

ν
β∇αV β.

The metric is then written as

ds2 = −
(
N2 −BiBi

)
dt2 + 2Bidtdx

i + γijdx
idxj ,

where N is the lapse, ~B the shift and γij the induced metric. The normal is given by

nα =

(
1

N
,−B

i

N

)
.

Einstein’s equations are written as a first order evolution system (here in vacuum)(
∂

∂t
− L ~B

)
γij = −2NKij(

∂

∂t
− L ~B

)
Kij = −DiDjN +N

(
Rij +KKij − 2KikK

k
j

)
.

Those evolution equations are supplemented by the constraints

• Hamiltonian constraint R+K2 −KijK
ij = 0.

• momentum constraint DjK
j
i −DiK = 0.
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