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The goal of this tutorial is to illustrate the importance of thermal fluctuations in low dimensional
systems. Indeed, as we will see, thermal fluctuations in dimension d = 1 and d = 2 are much stronger
than in three dimensions. This fact that thermal fluctuations destroy long-range order in (short range)
interacting systems was first realized by R. Peierls. Here, we will show that, in agreement with Peierl’s
argument, there can not exist any long range crystalline order in one and two dimensions. This tutorial
was inspired by the lectures given by J. Dalibard at Collège de France [1].

1 Peierl’s argument in dimension d = 1

We consider an infinite one-dimensional chain of atoms, whose positions are denoted by xi (where i
is the label of the atom). They are ordered such that . . . < xj−1 < xj < xj+1 < · · · . We assume that
the interactions are between nearest neighbors only (interactions are usually short-ranged in solids)
and described by a potential U(x) such that the total energy of interactions reads

Vint =
∑
i∈Z

U(xj+1 − xj) . (1)

We suppose that U(x) has a single minimum at x = a such that at T = 0 the atoms form a perfect
one-dimensional lattice with lattice spacing a. The goal is now to understand the effects of finite
temperature T > 0.

1.1 Heuristics

Before doing a complete exact computation, we first build a simple heuristic argument. Suppose
that x0 is fixed, and we define δj as the displacement of the j-th atom from its T = 0 equilibrium
position, i.e.

xj = xj−1 + a+ δj . (2)

We assume that the δj ’s are small and independent from each other.

1. Obtain the estimate

〈δ2j 〉 ∼
kB T

κ
,with κ = U ′′(a) , (3)

where here (and in the following), 〈· · · 〉 denotes an average over thermal fluctuations.

2. We define ∆j as

xj = x0 + j a+ ∆j . (4)

Show that ∆2
j ∼ (kB T/κ) j.

3. Deduce from the previous question that the crystalline order is lost for j ≥ κa2/(kBT ).
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1.2 The classical harmonic chain

We now assume that |xj+1−xj − a| � a and we denote by uj the displacement of the j-th atom from
its T = 0 equilibrium position Xj = ja, i.e.

xj = uj +Xj . (5)

We restrict ourselves to small deviations around the T = 0 equilibrium configuration and write the
total energy of the system (kinetic + interactions) of N atoms as

E1d =
N∑
j=1

[
1

2
mu̇2j +

κ

2
(uj+1 − uj)2

]
, (6)

where m is the mass of the atoms and κ is defined in (3). It is useful to consider a system with a finite
number N of atoms with periodic boundary conditions, i.e. uN+1 ≡ u1. For simplicity we consider N
even and decompose uj in Fourier modes ûq as

uj =
1√
N

∑
q

eiqXj ûq (7)

where the sum over q runs over q = −π
a , · · · ,−

2π
Na , 0,+

2π
Na , · · · ,

π
a (this is where we used that N is

even).

1. Show that the total energy E1d in (6) reads, in terms of ûq

E1d =
∑
q

[
1

2
m ˙̂uq ˙̂u−q +

1

2
mω2

q ûqû−q

]
, with ωq = 2

κ

m
| sin q a

2
| . (8)

2. At equilibrium, show that the correlations between the Fourier modes is given by

〈ûq ûq′〉 =
kBT

mω2
q

δq′,−q . (9)

3. Compute the 2-point correlations of the displacements 〈(uj − u0)2〉 and show that

〈(uj − u0)2〉 =
kB T

m

4

N

∑
q

sin2(qXj/2)

ω2
q

(10)

which, in the limit N →∞ can be written as

〈(uj − u0)2〉 ∼ C1d(j) , C1d(j) = 4
kBTa

m

∫ π/a

−π/a

sin2(qXj/2)

ω2
q

dq

2π
. (11)

The segment [−π/a,+π/a] corresponds to what is usually called the first Brillouin zone.

4. Obtain finally that for j � 1

C1d(j) ∼
kBT

κ
j , (12)

in agreement with the above heuristic argument.
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2 Two-dimensional crystals

We now discuss the case of two-dimensional crystals and consider a two-dimensional version of the
model in (6). In this case, at T = 0, the atoms stay at the sites of a 2d square lattice of lattice spacing
a, indexed by jjj = (jx, jy) where jx = 0, 1, · · · , N and jy = 0, 1, · · ·N (with N even, for simplicity).
The equilibrium position of the atoms is labeled by Rjjj = a(jxx̂x+jyŷ) where x̂ and ŷ are unit vectors
in the x and y directions respectively. As done before in the 1d case, we consider periodic boundary
conditions both in the x and y directions (the system is thus defined on a torus). At T > 0, the
position of the atoms is labelled by rjjj which is conveniently parameterized by the displacement uj
with respect to the equilibrium positions, i.e.

rjjj = Rjjj + ujjj . (13)

As in the 1d model (1), we consider nearest neighbor interactions (between two neighboring sites jjj
and jjj′). In the limit where |ujjj − ujjj′ | � a, we can restrict ourselves to the following harmonic model

E2d =
∑
jjj

1

2
mu̇jjj

2 +
∑
〈jjj,jjj′〉

κ

2
(ujjj − ujjj′)

2 , (14)

where
∑
〈jjj,jjj′〉 stands for a sum over all pairs of sites, indexed by the vectors (jjj, jjj′), which are nearest

neighbors.

2.1 Correlation functions

1. Following the rationale developed for d = 1, show that, at equilibrium, the 2-point correlation
is given by

〈(ujjj − u000)
2〉 =

8kB T

mN2

∑
q=(qx,qy)

sin2(q ·Rjjj/2)

ω2
q

, with ω2
q =

κ

m
(4− 2 cos(qx a)− 2 cos(qy a)) , (15)

where the sum over q runs over qx = −π
a , · · · ,−

2π
Na , 0,+

2π
Na , · · · ,

π
a and similarly for qy.

2. In the large N limit obtain that

〈(ujjj − u000)
2 ∼ C2d(jjj) , (16)

with

C2d(jjj) =
8kB Ta

2

m

∫
ZB

sin2(q ·Rjjj/2)

ω2
q

d2q

(2π)2
(17)

where
∫
ZB denotes the integral over the first 2d Brillouin zone, i.e. (qx, qy) ∈ [−π/a,+π/a] ×

[−π/a,+π/a]

3. Show that for |jjj| � 1, the 2d correlation function behaves as

C2d(jjj) ∼
2

π

kBT

κ
ln

(
|Rjjj |
a

)
, (18)

and compare with the 1d result for C1d in Eq. (12).

4. What would be the corresponding result in dimension d = 3? Comments.
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2.2 Bragg peaks and quasi-order

To test experimentally the presence of crystalline order, a standard approach is to measure the diffrac-
tion of a wave (photon, phonon, electrons, neutrons, etc) with an incidental wave vector ki. For a
perfect crystal spanned by the two vectors x̂ and ŷ, one expects to observe so called “Bragg peaks”
in the directions k = ki + Q where Q · x̂ ≡ 0 mod 2π as well as Q · ŷ ≡ 0 mod 2π (in other words,
Q belongs to the reciprocal lattice). We want to investigate what is the fate of these Bragg peaks in
presence of thermal fluctuations.

The starting point of our analysis is the expression of the diffracted intensity along the k-direction
which is given by

I(k) =

〈∣∣∣∑
jjj

eik·(Rjjj+ujjj)
∣∣∣2〉 , (19)

where the sum over jjj runs over all the sites of the 2d lattice. From now on, we work with the infinite
system, corresponding to the limit N → ∞ of the system with periodic boundary conditions studied
above.

1. Using the fact that the fluctuations of the positions ujjj are Gaussian, show that

I(k) = N
∑
jjj∈Z2

eik·Rjjj exp

(
−k

2

4
〈(ujjj − u000)

2〉
)
. (20)

2. At T = 0 show that I(k) is a sum of Dirac-delta peaks, the so called “Bragg-peaks” (for simplicity
suppose that the incidental wave-vector ki is orthogonal to the plane).

3. Using Poisson summation formula, show that

I(k) = N
∑
Q

∫
d2r ei(k−Q)·r exp

(
−k

2

4
〈(urrr − u000)

2〉
)
, (21)

where the sum over Q runs over the vectors belonging to the reciprocal lattice. We recall that
for a function f such that |f |2 is integrable over R, the Poisson summation formula states that∑

n∈Z
f(n) =

∑
k∈Z

f̂(k) , where f̂(k) =

∫ ∞
−∞

f(x)e−2iπkx dx . (22)

4. Let Q∗ be a specific vector belonging to the reciprocal lattice. Using the result in (18), together
with (21), show that for |k−Q∗| � a−1

I(k) ∼ 1

|k−Q∗|2−ηQ∗
, with ηQ∗ =

(Q∗)2kBT

2πκ
. (23)

Such algebraic singularities (at variance with delta peaks) are associated to the notion of “quasi-
order”.
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