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The idea of the nonperturbative renormalization group (NPRG) is to implement Wilson’s momen-
tum shell integration by adding to the original partition function a momentum dependent mass term
that gives a large “mass” to slow modes while leaving unaffected the rapid ones [1]. For a field theory
with one scalar field φ and Hamiltonian H[φ], we thus define a scale dependent family of partition
functions, indexed by k, via the path-integral

Zk[B] =

∫
Dφ e−H[φ]−∆Hk[φ]+

∫
xB φ , (1)

where we have set kB T = 1 and used the notation
∫
x ≡

∫
dd x for the real space integral over the

whole volume. We denote by Λ the ultra-violet cutoff, a = 2π/Λ being the microscopic length scale
(i.e. lattice spacing) of the model. In Eq. (1), the supplement of Hamiltonian ∆Hk[φ] reads

∆Hk[φ] =
1

2

∫
q
R̂k(q) φ̂(q) φ̂(−q) , with 0 ≤ k ≤ Λ , (2)

where
∫
q =

∫ ddq
(2π)d

denotes an integral in momentum space and we used the notation f̂ to denote

the Fourier transform of the function f . In particular, φ̂(q) =
∫
x e

iq xφ(x) (note that x and q are

d-dimensional vectors). Here we will use a particular choice of the regulator R̂k(q)

R̂k(q) = (k2 − q2) θ(k2 − q2) , (3)

where θ(x) = 1 if x ≥ 0 and θ(x) = 0 if x < 0, which is convenient for analytical computations.
The NPRG relies on an exact equation of evolution, when k is lowered from k = Λ down to k → 0,

for the effective action Γk[M ], which is the Legendre transform of lnZ[B] in Eq. (1), which reads

∂kΓk[M ] =
1

2

∫
x,y
∂kRk(x− y)

[
Γ

(2)
k +Rk

]−1
(x, y) (4)

where Rk(x, y) = Rk(x − y), Γ
(2)
k (x, y) = δ2Γk[M ]

δM(x)δM(y) and where the inverse in Eq. (4) is understood

in the sense of operators,
∫
y O
−1(x, y)O(y, z) = δd(x − z). The solution to this equation (4) is then

fully specified by the initial condition Γk=Λ[M ] = H[M ], which is the original Hamiltonian (since no
fluctuations are integrated out at that scale [see Eq. (3))].

This equation (4) is exact (it contains no approximation) and very general (it holds in principle for
any field theory) but it turns out that solving it, to extract for instance critical exponents, is extremely
hard. The goal of this tutorial is to present an approximation scheme, the so called “Local Potential
Approximation” (LPA) which has been widely used in the literature and contains most of the ideas
that guided the most recent developments. We will then apply it to the Ising model.

1 Local Potential Approximation: general framework

The idea of the LPA is to propose an ansatz for the (approximate) solution of Eq. (4) of the form

Γk[M ] =

∫
x

[
1

2
(∇xM(x))2 + Uk[M(x)]

]
. (5)
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1. Let M(x) = Munif be a uniform configuration. Show that

Uk(Munif) =
1

V
Γk[Munif ] , (6)

where V is the volume of the system.

2. Let O(x, y) ≡ O(x− y) a translation invariant operator, such that O(x) = O(−x), show that its
inverse O−1(x, y) can be computed via the use of Fourier transform, i.e.

O−1(x, y) =

∫
q
eiq (x−y) 1

Ô(q)
, Ô(q) =

∫
x
O(x)eiqx . (7)

Hint: note that ψq(y) = 1
(2π)d/2

eiqy is an eigenvector of O(x, y).

3. Deduce from Eq. (7) that the RG equation for Uk(M) reads

∂kUk(M) =
1

2

∫
q

∂kR̂k(q)

q2 + R̂k(q) + ∂2

∂M2Uk(M)
. (8)

4. For the specific choice of the cut-off function in Eq. (3) show that the integral over q can be
performed explicitly, yielding

∂kUk(M) =
4vd
d

kd+1

k2 + ∂2

∂M2Uk(M)
(9)

where vd = 1/(2d+1πd/2Γ(d/2)). We recall that the area of the unit sphere in d-dimensions is
Sd = 2πd/2/Γ(d/2).

2 Application to the Ising model

In this case, one expects that the effective action Γk[M ] is invariant under the symmetry group Z2.
Hence, we assume that

Uk(M) = uk

(
ρ =

M2

2

)
. (10)

1. Show that the equation for uk(ρ) reads

∂kuk(ρ) =
4vd
d

kd+1

k2 + u′k(ρ) + 2ρ u′′k(ρ)
. (11)

2. In order to find fixed-point solutions to this RG equation (11) one has to work with dimensionless
variables. Since k has dimension of an inverse length (see for instance Eq. (3)), justify that the
dimension of Γk is zero, i.e. [Γk] = k0, which in turn implies that the dimensions of M and Uk
are

[M ] = k(d−2)/2 , [Uk] = [uk] = kd . (12)

We thus define the dimensionless quantities

x̃ = k x , ρ̃(x̃) = k2−dρ(x) , ũt(ρ̃) = k−duk(ρ) , with t = ln(k/Λ) . (13)
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3. Obtain the RG equation for the rescaled potential ũt under the form

∂tũt = −d ũt + (d− 2)ρ̃ ũ′t +
4vd
d

1

1 + ũ′t + 2ρ̃ ũ′′t
. (14)

In general, the study of this RG equation (the right hand side is the so-called β-function) is
quite difficult and has to be handled numerically. Here, to get some insights on this equation, we
expand ũt(ρ̃) in powers of ρ̃, up to order O(ρ̃2) = O(M4) (in the spirit of the Ginzburg-Landau
φ4 theory) and we write

ũt(ρ̃) =
gt
2

(ρ̃− µt)2 , (15)

and we assume that, at scale k = Λ, µ0 > 0 – which corresponds to a symmetry broken phase with
a spontaneous magnetization Msp = Λ(d−2)/2

√
2µ0 at the mean field level of approximation (i.e.,

when fluctuations are not taken into account). However, the integration of the fluctuations can
modify profoundly this picture: as we will see the minimum of the potential µt has a non-trivial
RG flow that can drive it to zero.

To derive the RG equations of µt and gt from (15), it is useful to define µt and gt as

∂ũt
∂ρ̃

∣∣∣∣∣
ρ̃=µt

= 0 (16)

∂2ũt
∂ρ̃2

∣∣∣∣∣
ρ̃=µt

= gt . (17)

4. The flow equation for λt and µt can be obtained by taking derivatives of these equations (16)
and (17) with respect to t. Note that ũt(κt) depends on t (i) explicitly through the t-dependence
of the function ũt and (ii) implicitly through the t-dependence of the argument κt where it is
evaluated. Based on this, show that

∂

∂t

∂nũt
∂ρ̃n

∣∣∣∣∣
ρ̃=µt

 =
∂n∂tũt
∂ρ̃n

∣∣∣∣∣
ρ̃=µt

+ ∂tκt
∂n+1ũt
∂ρ̃n+1

∣∣∣∣∣
ρ̃=µt

(18)

and obtain the following RG equations for µt and gt

∂tµt = −(d− 2)µt +
12vd
d

1

(1 + 2gt µt)2
(19)

∂tgt = (d− 4)gt +
72vd
d

g2
t

(1 + 2gt µt)3
. (20)

5. Discuss qualitatively these equations (19) and in particular the three possible scenarios: (i) the
system is in its broken symmetry phase, (ii) the system is in the high temperature phase and
(iii) the system is critical.

3 Study of the fixed point around the dimension d = 4

1. Argue that d = 4 is the upper critical dimension for this system, i.e., that the coupling constant
gt is irrelevant in d > 4.
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2. We see the these RG equations (19) can be defined for any value of d, even non-integer ones.
We thus set d = 4 − ε and consider the limit ε � 1. In this limit, show that the RG equations
read (up to order 2 in the parameters gt and µt)

∂tµt = β(µt) = −(2− ε)µt +
3

32π2
− 3

8π2
gtµt (21)

∂tgt = β(gt) = −εgt +
9

16π2
g2
t . (22)

3. Show that these equations admit a non-trivial fixed point solution (µ∗, λ∗), known as the Wilson-
Fisher fixed point [3].

4. The critical exponents characterize the behavior of the RG flow around the fixed point. In
particular, the exponent γ characterizing the divergence of the magnetic susceptibility close to
Tc can be obtained from the eigenvalue λ characterizing the unstable direction around the RG
fixed point, i.e.

∂t(µt − µ∗) ' −λ (µt − µ∗) , and γ =
2

λ
. (23)

Show that γ = 1 + ε/6 + o(ε). At this order in ε, one can check that this result for the exponent
λ, using LPA, coincides with the perturbative ε expansion (at one-loop order). However, LPA
fails to reproduce the correct result of the ε expansion at order O(ε2) (i.e. at two-loop order),
which shows explicitly that this is an approximation.
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