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In this tutorial we study the XY model defined by the Hamiltonian

βHXY = −K
∑
〈i,j〉

Si · Sj = −K
∑
〈i,j〉

cos(θi − θj) (1)

on a two-dimensional square lattice of linear size L, with lattice spacing a and periodic boundary
conditions. In Eq. (1) i and j are 2d vectors of the square lattice Z2, 〈i, j〉 denotes nearest neighbours
on this square lattice, while θi is the angle between the spin at site i, Si ∈ R2 with S2

i = 1, and the
x-axis.

During the lectures, you have seen that the spin-spin correlation function

C(r) = 〈S0 · Sr〉 = 〈cos(θ0 − θr)〉 (2)

between the spin at the origin S0 and the spin at site r, Sr behaves quite differently at high and low
temperature. At high temperature (i.e. small K), it decays exponentially

C(r) ≈
r�a

exp

(
− r

ξ(K)

)
, ξ(K) ≈ − 1

ln(K/2)
, (3)

with r = |r|. In the other low temperature limit, K � 1, the correlation function decays algebraically

C(r) ≈
r�a

(a
r

)η(K)
(4)

with η(K) ≈ 1/(2πK) at large K.
The comparison of correlations at low temperature in Eq. (4) and at high-temperature in Eq.

(3) indicates that there exists a transition, the so-called Kosterlitz-Thouless transition [1], where
the algebraic decay (4) transforms into an exponential decay (3). The goal of this tutorial is to
provide a quantitative study of this transition using a renormalisation group (RG) analysis. To this
purpose, we will first reformulate the 2d-XY model as a 2d-Coulomb gas – through the so-called Villain
approximation – and then present a real space renormalisation group (RG) analysis of this Coulomb
gas.

1 From the XY model to the Coulomb gas via the Villain approxi-
mation

We would like to provide a renormalisation group description of this KT transition. This is however
very hard to do directly on the XY Hamiltonian (1) where the spin-waves and the vortices are coupled.
That is why we will construct an approximate (though reliable for large K, i.e. small temperature),
description of the XY model in terms of 2d-Coulomb gas. This can be conveniently achieved using
the Villain approximation.

It is useful to start with the following Fourier decomposition

eK cosu =
∑
n∈Z

einuIn(K) , In(x) =

∫ 2π

0

dθ

2π
ex cos θ+inθ , (5)

where In(x) is a (modified) Bessel function.
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1. Justify the large K asymptotic behavior

In(K) ≈ 1√
2πK

eK−n
2/(2K) . (6)

We will use this asymptotic behavior (6) to rewrite the partition function of the XY model (1)

ZXY =
∏
i

∫ 2π

0
dθi e

K
∑

〈i,j〉 cos(θi−θj) . (7)

2. Show, using (6), that ZXY can be rewritten, for K � 1, as

ZXY ≈
∏
i

∫ 2π

0
dθi

(
eK√
2πK

)2N ∏
i,µ=x,y

∑
ni,µ∈Z

exp
[
ini,µ∂µθi − n2

i,µ/(2K)
]
, (8)

where ni,µ with µ = x, y is a 2d-vector with integer component, associated to each site i and
N = (L/a)2 is the total number of spins. In (8) we have introduced the notation

∂µθi = θi+eµ − θi , (9)

where ex and ey are the two unit vectors along the x and y directions.

Under this form (8), we can now perform the integral over the angles θi’s.

3. Show that the integral over θi’s imposes the constraint, for each site i of the lattice,

ni,x − ni−ex,x + ni,y − ni−ey ,y = 0 , (10)

which can be re-written as a discrete divergence-free condition, i.e.
∑

µ=x,y ∂µni,µ = 0. As is the
case of continuum valued vectors, the vector ni = (ni,x, ni,y) can thus be expressed as the discrete
curl of an integer valued scalar field, i.e. ni,x = ∂ypi and ni,y = −∂xpi [with the notation defined
in (9)]. Therefore the partition function in (8) can be rewritten – up to irrelevant numerical
prefactors – as

ZXY ∝
∑
pi∈Z

e−
1

2K

∑
i,µ=x,y(∂µpi)

2

. (11)

Note that this can also be interpreted as the partition function of a 2d discrete height model.

4. Use the Poisson summation formula∑
n∈Z

g(n) =
∑
m∈Z

∫ ∞
−∞

dϕ g(ϕ) e2iπmϕ (12)

to re-write the partition function in (11) as

ZXY ∝ Zsw

∑
mi∈Z

e−2π2K
∑

i,jmiG(i−j)mj , (13)

where G(r) is the following Green’s function

G(r) =
( a
L

)2 ∑
q 6=0

eiq·r

4− 2 cos(qx a)− 2 cos (qy a)
, (14)

where q = 2π
L (nx, ny) where nx, ny are integers with nx, ny = − L

2a ,−
L
2a + 1, · · · , L2a (we assume,

for simplicity, that L
2a is an integer). In Eq. (13), Zsw is the partition function corresponding to

the spin-wave excitations, i.e. Zsw =
∏

i

∫∞
−∞ dϕi e

− 1
2K

∑
〈i,j〉(ϕi−ϕj)

2

.
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It is useful to introduce a regularised Green’s function defined as

G(r) = G(r)−G(0) . (15)

In the following we will use the following asymptotic behaviors (see also the tutorial no 7)

G(0) ≈
L�a

1

2π
ln

(
L

a

)
, G(r) ≈

r�a
− 1

2π
ln
(r
a

)
− c (16)

where r = |r| and c is a constant, c = 1
2π (γE+ 3

2 ln 2) = 0.257 . . . ≈ 1
4 (we recall that γE = 0.577 . . .

is the Euler constant).

5. Finally, working with the regularised propagator G(r) in Eq. (16) instead of G(r), show that
the partition function ZXY in (13) can finally be written as

ZXY ∝ ZswZv , Zv =
∑
mi∈Z

′ y
∑

im
2
i eπK

∑
i,jmi ln(|i−j|/a)mj (17)

where
∑

mi∈Z
′ indicates a constrained sum such that

∑
imi = 0 and y = e−π

2K/2. What is the
physical interpretation of the different terms in (17)?

2 Renormalisation group flow

Thanks to the Villain approximation, the spin-waves and and the vortices are now decoupled in Eq. (17).
The spin-wave part is a simple Gaussian theory and the corresponding partition function Zsw can be
evaluated exactly. The second part, describing the vortices, Zv is much harder but it can be under-
stood perturbatively in the limit y → 0. In particular, under this form (17), it is possible to compute
the correlation function in Eq. (2), in perturbation, for small y (the computation is a bit cumbersome
and we refer the interested reader to the original paper Ref. [2] or to the more recent textbook [3] for
details)

C(r) ≈
r�a

(r
a

)− 1
2πKeff ,

1

Keff
=

1

K
+ 4π3y2

∫ L

a

dr

a

(r
a

)3−2πK
. (18)

1. Argue that this perturbation theory is well defined for K > Kc = 2/π. What is the physical
origin of this critical temperature Kc?

To make sense of this perturbation theory for K ≥ Kc requires a renormalisation group (RG)
analysis which is conveniently performed in real space as follows.

2. We introduce b > 1 and split the integral in the right hand side of (18) as
∫ L
a dr . . . =

∫ ba
a dr . . .+∫ L

ba dr . . .. We thus define K ′ ≡ K(ba) as

K ′−1 = K−1 + 4π3y2

∫ ba

a

dr

a

(r
a

)3−2πK
. (19)

Show that if we define y′ ≡ y(ba) as

y′ = b2−πKy (20)

then the relation in Eq. (18) can be written (to lowest order in y) as

1

Keff
=

1

K ′
+ 4π3y′2

∫ L

ã

dr

ã

(r
ã

)3−2πK′

, ã = ba . (21)

Therefore, K ′ in (19) and y′ in (20) appear as the effective parameters of the theory with an
effective lattice spacing ã = ba > a (where “high-energy modes” have been integrated out).
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3. We now consider an infinitesimal RG transformation where b = 1 + δl, with δl � 1. Show that
the running couplings K ≡ K(l) and y ≡ y(l) satisfy the RG equations (to lowest order in y)

d

dl
K−1 = 4π3y2 ,

d

dl
y = (2− πK)y . (22)

4. What are the fixed points of this RG flow (22) in the (K−1, y) plane? Discuss their stability.

5. We now study the RG flow in the vicinity of Kc = 2/π and set K−1 = π/2 + x, with x � 1.
Show that, to lowest order in x and y, the RG equations (22) read

dx

dl
= 4π3y2 ,

dy

dl
=

4

π
xy . (23)

6. Deduce from (22) that the RG trajectories in (K−1, y) plane, in the vicinity of (K−1 = π/2, y =
0), are hyperbolas of equations

x2 − π4y2 = κ , (24)

where κ is a real constant (positive or negative). Plot a few trajectories, as well as the curve
corresponding to the “initial” physical XY Hamiltonian, corresponding to y(0) = e−π

2K(0)/2.
Explain graphically when the phase transition occurs.
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