{ListeTraductions,#GET{ListeTraductions},#ARRAY{#LANG,#URL_ARTICLE}} {ListeTraductions,#GET{ListeTraductions},#ARRAY{#LANG,#URL_ARTICLE}}
 

Physique quantique des nanostructures semiconductrices

Accès rapides

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP

Actualités : Séminaire de Recherche ICFP
du 14 au 18 novembre 2022 :

Retrouvez le programme complet

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 60
enseignement@phys.ens.fr

r>

Enseignants : Cristiano CIUTI, Carlo SIRTORI, Pascale SENELLART et Jacqueline BLOCH
Chargé de TD :
Physique de la matière condensée : Option
Physique macroscopique et complexité (ex physique des liquides) : Option
Physique quantique : Option
Physique théorique : Option
ECTS : 3
Langue d’enseignement : Anglais
Site web :

Description

The aim of the present course is to introduce the forefront research developments in the field of semiconductor quantum optics and quantum fluidics based on the control of light-matter coupling in semiconductor nanostructures.

Semiconductors have dramatically contributed to the evolution of modern technology with the impressive development of electronic and optical devices. The mastering of semiconductor growth and processing techniques allows fabrication of increasingly efficient devices such as semiconductor diodes, lasers and photodetectors. In parallel to these applied research development, the ability to confining carriers and light in smaller and smaller volume now reveals fascinating quantum physics.
We will describe the powerful tools used to control the confinement in any dimension of both electronic and optical waves in semiconductor micro and nanostructures. We will show how heterostructures can be designed at will to trigger the quantum cascade of electrons, to create artificial atoms or to obtain Bose quantum fluids.
We will show that the strong light matter coupling can give rise to new quasi-particules, which are half-light and half-matter and behave as weakly interacting bosons. These so called cavity polaritons now appear as a fascinating system to investigate the physics of Bose condensates. Superfluidity, vortices and macroscopic coherence can be observed using relatively simple spectroscopical tools.
Further increasing the light matter coupling strength, the ultra-strong coupling regime can be achieved, where the light matter coupling constant is of the same order or larger than the transition energy. In this case, the whole quantum theory of light matter coupling has to be revisited and fascinated effects such as squeezed vacuum and quantum phase transitions are expected.
Finally we will show that cavity quantum electrodynamics can also be explored in semiconductor nanostructures. Indeed single quantum dots can be considered in many aspects as artificial atoms, which can be excellent sources of quantum light or store the information on a single spin. Embedding these quantum emitters in microcavities open the way to teleportation, remote spin entanglement and many other steps toward the demonstration of a solid state quantum network.

For more information

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP

Actualités : Séminaire de Recherche ICFP
du 14 au 18 novembre 2022 :

Retrouvez le programme complet

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 60
enseignement@phys.ens.fr

r>