{ListeTraductions,#GET{ListeTraductions},#ARRAY{#LANG,#URL_ARTICLE}}
 

Atoms and Photons

Accès rapides

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP

Actualités : Séminaire de Recherche ICFP
du 14 au 18 novembre 2022 :

Retrouvez le programme complet

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 60
enseignement@phys.ens.fr

r>

Parcours Physique Quantique = cours obligatoire

Faculty : Hélène Perrin

Tutors : Tarik Yefsah and Clément Sayrin

ECTS credits : 6

Language of instruction : English

Examination : Oral exam, either face to face or by videoconferencing. It will last for 30 minutes, on a problem proposed to the student at the beginning of the 30 minutes, with questions and discussion with the examiner. This examiner will be one of the three members of the pedagogical team, namely Hélène Perrin, Clément Sayrin or Tarik Yefsah.

Description

- Lectures notes :
Lectures notes in English, handouts of the courses slides and texts of former exams are available at http://www-lpl.univ-paris13.fr/bec (follow Group members/Hélène Perrin)
 

- Bibiliography
. C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, “An introduction to quantum electrodynamics” and “Photons and atoms”, Wiley, 1992
. S. Haroche and J.-M. Raimond “Exploring the quantum”, OUP 2006
. G. Grynberg, A. Aspect and C. Fabre, “Introduction to Quantum Optics”, Cambridge University Press (2010)
. C. Cohen-Tannoudji and D. Guéry-Odelin “Advances in atomic physics : an overview”, World Scientific 2012

- Program
1) Classical and phenomenological approaches to light-matter coupling. Harmonically bound electron, Einstein’s coefficients.
2) Semi-classical approach. Atom-field interaction Hamiltonian. Perturbative solution for the non-resonant interaction. Resonant interaction : Rabi oscillation and applications, Ramsey interferometry. Atomic relaxation : Kraus processes, Lindblad equations and quantum jumps. Optical Bloch equations and applications : saturation, saturation spectroscopy, EIT, Maxwell-Bloch equations, slow light.
3) Field quantization. Eigenmodes of the classical field, normal variables, field energy, momentum and angular momentum. Field Hamiltonian, creation and annihilation operators, field operators. Quantum states of the field : Fock states, coherent states. Phase space representations, Wigner function. Coupling of field modes : beam-splitter model. Field relaxation : Lindblad equation and evolution of states.
4) Quantum field coupled with quantum matter. Atom-field interaction. Spontaneous emission. Photo-detection signals and intensity correlations, Hanbury-Brown and Twiss, bunching and anti-bunching. Jaynes and Cummings model, cavity quantum electrodynamics. Applications : from Purcell effect to strong coupling. Collective emission, super-radiance.

- Prerequisites
The course assumes an excellent command of basic quantum physics : Dirac formalism, operators, measurement, Hamiltonian dynamics, spin-1/2, elementary atomic physics (hydrogen), harmonic oscillator (basically all of Volume 1 of the Cohen-Tannoudji, Diu and Laloë classic textbook). A working knowledge of density operator is also required, as well as a good knowledge of classical electromagnetism : Maxwell equations, propagation equations, limiting conditions, plane waves, spherical waves, dipole radiation (see the Jackson for instance).

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP

Actualités : Séminaire de Recherche ICFP
du 14 au 18 novembre 2022 :

Retrouvez le programme complet

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 60
enseignement@phys.ens.fr

r>